Positive Results With Negative Resistance

Try an experiment. Next time you are in a room with someone, ask them to name everything in the room. Only certain kinds of people will say “air” or “light.” For most people, those are just givens, and you don’t think about them unless, for some reason, you don’t have them. Resistance is like that in electronics. You use it constantly, but do you ever think much about what it is? For a resistor, the value in ohms really represents the slope of the line that describes the amount of voltage you’ll see across the component when it carries a certain amount of current. For resistors, that slope is — at least in theory — constant and positive. But [Void Electronics] made a video exploring negative resistance, and it is worth watching, below.

If you haven’t seen negative resistance before, you might wonder how that is possible. Ohm’s law is just a shorthand for calculating the slope of a graph with voltage on the Y axis and current on the X axis. It works because the voltage and current are always zero at the same time, so the slope is (V-0)/(I-0), and we just shorten that to the normal Ohm’s law equation.

But not everything has a linear response to current. Some devices will have different slopes over different current regions. And sometimes that slope can be negative, meaning that an increase in current through the device will cause it to drop less voltage. Of course, this is usually just over a narrow range and, as [Void] points out, most devices don’t specify that parameter on their data sheets. In fact, some transistors won’t even work in the circuit.

The circuit in question in the video below the break is an odd one. It uses two resistors, an LED, and a transistor. But the transistor’s base is left disconnected. No 555 needed. How does it work? Watch the video and you’ll see. There’s even a curve tracer if you don’t like to see hand-drawn graphs.

We’ve looked at negative resistance more than once. There are a few exotic devices, like tunnel diodes, that are explicitly used for the negative resistance property. When the gas in a neon bulb breaks down, you get the same effect. Continue reading “Positive Results With Negative Resistance”

A photo of the old mechanical and new digital altimeters

Ben Eater Explains How Aircraft Systems Communicate With The ARINC 429 Protocol

Over on his YouTube channel the inimitable [Ben Eater] takes a look at an electronic altimeter which replaces an old mechanical altimeter in an airplane.

The old altimeter was entirely mechanical, except for a pair of wires which can power a backlight. Both the old and new altimeters have a dial on the front for calibrating the meter. The electronic altimeter has a connector on the back for integrating with the rest of the airplane. [Ben] notes that this particular electronic altimeter is only a backup in the airplane it is installed in, it’s there for a “second opinion” or in case of emergency.

Continue reading “Ben Eater Explains How Aircraft Systems Communicate With The ARINC 429 Protocol”

Motors Make The Best Knobs With SimpleFOC

The worst thing about a volume knob is that, having connected it to a computer, it might be wrong: if you’ve manually altered the volume settings somewhere else, the knob’s reading won’t be correct. [I Got Distracted] has a quick tutorial on YouTube showing how to use a BLDC, a hall effect sensor, Pi Pico and the SimpleFOC library to make a knob with active haptic feedback and positioning.

We covered the SimpleFOC library a few years ago, but in case you missed it, it’s, well, a simple library for FOC on all of our favorite microcontrollers, from Arduino to ESP to Pico. FOC stands for field-oriented control, which is a particular way of providing smooth, precise control to BLDCs. (That’s a BrushLess DC motor, if the slightly-odd acronym is new to you.) [I Got Distracted] explains exactly how that works, and shows us just how simple the SimpleFOC project is to use in this video.  Why, they even produce their own motor controllers, for a fully-integrated experience. (You aren’t restricted to that hardware, but it certainly does make things easy.)

The haptic feedback and self-dialing knob make for an easy introductory project, but seeing how quick it hacks together, you can doubtless think of other possibilities. The SimpleFOC controller used in this video is limited to relatively small motors, but if you want to drive hundreds of kilowatts through open source hardware, we’ve covered that, too.  

Arguably, using a motor as a knob isn’t within the design spec, and so could almost qualify for our ongoing Component Abuse Challenge, had [I Got Distracted] thought to enter.

Continue reading “Motors Make The Best Knobs With SimpleFOC”

Wearable Neon Necklaces Run On Battery Power

We typically think of neon signs as big commercial advertisements, hanging inside windows and lofted on tall signposts outside highway-adjacent businesses. [James Akers] has gone the other route with a fashionable build, creating little wearable neon necklaces that glow beautifully in just the same way.

Aiming for small scale, [James] began with 6 mm blue phosphor glass tube, which was formed to reference Pink Pony Club, one of Chappell Roan’s more popular songs. The glass was then filled with pure neon up to a relatively low pressure of just 8 torr. This was an intentional choice to create a more conductive lamp that would be easier to run off a battery supply. The use of pure neon also made the tubes easy to repair in the event they had a leak and needed a refill. A Midget Script gas tube power supply is used to drive the tiny tubes from DC power. In testing, the tubes draw just 0.78 amps at 11.8 volts. It’s not a light current draw, but for neon, it’s pretty good—and you could easily carry a battery pack to run it for an hour or three without issue.

If you’re not a glass blower, fear not—you can always make stuff that has a similar visual effect with some LEDs and creativity. Meanwhile, if you’ve got your own neon creations on the go—perhaps for Halloween?—don’t hesitate to light up the tipsline!

How To Design Custom LCDs For Your Own Projects

These days, you can buy full graphical LCD or OLED displays for just a few dollars. However, if you’re so inclined, you can actually get your own segmented LCDs made to suit your own projects. [Icoso Labs] explains how it’s done, with plenty of handy tips along the way.

There are three primary things you need to do to design a segmented LCD. First, you need to design it visually, laying out all the individual elements you want on the display. Then you need to determine how you want to split them up into segments. Some elements you’ll just want to be a single monolithic on-or-off shape, while other areas you might want to create things like seven-segment numerals for displaying numbers and so on. With that done, you also need to specify various engineering details—such as whether you want a transmissive, reflective, or transflective display, and thicknesses, colors, and other important things. Armed with all that, you can take your design to a manufacturer and get them to make a bunch for you. Often, there’s a moderately high tooling cost to start a run, but you can then turn out more examples of your design for just a few bucks apiece.

It’s a neat guide to designing something few of us have ever considered sourcing for ourselves. We’ve featured other insights into the world of segmented LCDs before, too. Video after the break.

Continue reading “How To Design Custom LCDs For Your Own Projects”

How Hydraulic Ram Pumps Push Water Uphill With No External Power Input

Imagine you have a natural stream running through a low-lying area on your farm. It’s a great source of fresh water, only you really need it to irrigate some crops sitting at a higher elevation. The area is quite remote from fixed utilities, complicating the problem.

Your first thought might be to grab a commercial off-the-shelf pump of some sort, along with a fancy solar power system to provide the necessary power to run it. But what if there were a type of pump that could do the job with no external power input at all? Enter the hydraulic ram pump.

Continue reading “How Hydraulic Ram Pumps Push Water Uphill With No External Power Input”

Electric Surfboard Gets Thrust Vectoring Upgrade

The internet has already taught us that an electric surfboard is a great way to get around on the water while looking like an absolute badass. [RCLifeOn] is continuing to push the boat forward in this regard, however, adding thrust vectoring technology to his already-impressive build.

If you’re unfamiliar with the world of electric surfboards, the concept is relatively simple. Stick one or more electric ducted fan thrusters on the back, add some speed controllers, and power everything from a chunky bank of lithium-ion batteries. Throw in a wireless hand controller, and you’ve got one heck of a personal watercraft.

Traditionally, these craft are steered simply by leaning and twisting as a surfer would with a traditional board. However, more dynamic control is possible if you add a way to aim the thrust coming from the propulsion system. [RCLifeOn] achieved this by adding steerable nozzles behind the ducted fan thrusters, controlled with big hobby servos to handle the forces involved. The result is a more controllable electric surfboard that can seriously carve through the turns. Plus, it’s now effectively an RC boat all on its own, as it no longer needs a rider on board to steer.

We’ve covered various developments in this surfboard’s history before, too. Video after the break. Continue reading “Electric Surfboard Gets Thrust Vectoring Upgrade”