Compose Any Song With Twelve Buttons

Limitations placed on any creative process often paradoxically create an environment in which creativity flourishes. A simple overview of modern pop, rock, or country music illustrates this principle quite readily. A bulk of these songs are built around a very small subset of music theory, often varying no more than the key or the lyrics. Somehow, almost all modern popular music exists within this tiny realm. [DeckerEgo] may have had this idea in mind when he created this tiny MIDI device which allows the creation of complex musical scores using a keyboard with only 12 buttons.

The instrument is based around the Adafruit MacroPad, which is itself built on the RP2040 chip. As a MIDI device, it needs to be connected to a computer running software which can support MIDI instruments, but once its assembled and given its firmware, it’s ready to rock. A musician can select one of any number of musical scales to operate within, and the 12 keys on the pad are mapped to the 12 chromatic notes within that scale. It can also be used to generate drum tracks or other backing tracks to loop before being used to create melodies as well.

[DeckerEgo] took a bit of inspiration from an even simpler macro pad we featured before which is based around the idea that a shockingly high number of songs use the same four chords. His macro pad includes creation of chord progressions as well, but expands on that idea to make more complete compositions possible. And, for those looking to build their own or expand on this project, he has also made all of the source code available on his GitHub page.

Continue reading “Compose Any Song With Twelve Buttons”

Vinyl Sales Ran Circles Around CDs In 2022

How do you take your music these days? For those in Camp Tangible, it seems our ranks are certainly growing, and in the analog direction. For the first time since 1987, vinyl record sales have outperformed CD sales in the US, according to a new report. The CD, which saved us all from the cassette, was a digital revolution in music. But for some, the love was lost somewhere among the ones and zeroes.

Those who prefer pure analog troughs of sound cut into wax have never given up on vinyl, and the real ones probably gobbled up a bunch of it in the 90s when everybody was CD-crazy. But mind you these aren’t used vinyl sales we’re talking about, which means that enough new vinyl has to have been readily available for purchase for quite some time now. Although it doesn’t really seem like that long, new vinyl’s been back for almost 20 years — and according to the report, 2022 was the 16th consecutive year of growth for record sales.

So Why Vinyl?

Nostalgia ain’t what it used to be, but there was a time in my 1980s childhood when vinyl was all this scribe had to listen to. I have historically been a bit slow to adopt new music formats — I didn’t have a CD player until 1998, and it was given to me for my birthday. I was excited to get the thing, mind you, especially since it had 10 seconds of anti-skip protection (which of course was a huge concern with portable CD players).

But CDs are way different from records. Sure, they’re both round, but the similarities sort of end there. For one thing, the artwork is disappointingly small compared to vinyl. And the whole gatefold album cover thing isn’t really possible with a CD, unless you forego the jewel case and release it in a chintzy little cardboard jacket. But then people will have this one disc that’s four times thinner than the rest and it throws everything off in the collection.

Continue reading “Vinyl Sales Ran Circles Around CDs In 2022”

Tiny PCB PiezoPiano Plays Just One Octave

Grand pianos are beautiful instruments, but take up altogether too much space. Upright pianos are smaller, but still fairly hefty. When it comes to the PiezoPiano, though, we suspect nobody could complain about its diminutive size. It’s a tiny thing with just one buzzy little octave for your playing pleasure.

The PiezoPiano is a single PCB device with a ATmega4809 running the show. It has eight buttons and eight piezo transducers that give you just one octave’s range on the keyboard. Truth be told, that’s only in one scale; you’re not getting the whole twelve tones of flats and sharps included. And, when we say keyboard, we really mean “tactile buttons.” You get the drift. It’s all assembled in a cute enclosure mimicking the shape of a real grand piano.

Fundamentally, it’s a cute little musical desktoy that reminds us greatly of the Stylophone. Impressively, though, those eight buzzers mean it has eight-note polyphony. That’s nothing to sniff at compared to all the monophonic synths out there. It’s also available on Tindie if you’d like to buy a kit off the shelf. Video after the break.

Continue reading “Tiny PCB PiezoPiano Plays Just One Octave”

Mechanical Keyboard As Travel Saxophone

Those who play larger musical instruments, things like drums, piano, harp, tuba, upright bass, or Zeusaphone, know well the challenges of simply transporting their chosen instrument to band practice, a symphony hall, or local watering hole. Even those playing more manageably-sized instruments may have similar troubles at some point especially when traveling where luggage space is at a premium like on an airplane. That’s why [jcard0na] built this electronic saxophone, designed to be as small as possible.

Known as the “haxophone”, the musical instrument eschews the vibrating column of air typical of woodwind instruments in favor of an electronic substitute. Based around the Raspberry Pi, the device consists of a custom HAT with a number of mechanical keyboard switches arrayed in a way close enough to the layout of a standard saxophone that saxophonists will be able to intuitively and easily play. Two pieces of software run on the Pi to replicate the musical instrument, one that detects the player’s breaths and key presses, and another that synthesizes this information into sound.

While [jcard0na] notes that this will never replicate the depth and feel of a real instrument, it does accomplish its design goal of being much more easily transportable than all but the most soprano of true saxophones. As a musical project it’s an excellent example of good design as well, much like this set of electronic drums with a similar design goal of portability.

A Tape Loop Echo You Can Build

Echo and reverb are now electronic audio effects done in a computer or an integrated circuit, but originally they were achieved through mechanical means. Reverb units used springs, and echo units used loops of magnetic tape. As a musician hankering after a mechanical tape echo unit, [Adam Paul] was left with no choice but to build his own. We featured an early prototype, but now he’s back with a finished version that’s intended to be replicated by other musicians.

The unit takes a cassette mechanism from one of the last still-manufactured players available through the usual sources. It splits record and play heads, with the normal cassette replaced with a tape loop made from extra-thick computer tape. A custom PCB replaces most of the electronics, and the auto-reverse system is disabled.

The result is a functional tape echo system, as can be seen in the video below the break. This is ready to build yourself, with everything on a GitHub repository and an extremely comprehensive build guide, so do any of you fancy a go?

Read about the device’s earlier incarnation here.

Continue reading “A Tape Loop Echo You Can Build”

A man sits in front of a wooden table. There is a black box with a number of knobs hand-labeled on blue painter's tape. A white breadboard with a number of wires protruding from it is visible on the box's left side. An oscilliscope is behind the black box and has a yellow waveform displaying on its screen.

A More Expressive Synth Via Flexure

Synthesizers can make some great music, but sometimes they feel a bit robotic in comparison to their analog counterparts. [Sound Werkshop] built a “minimum viable” expressive synth to overcome this challenge. (YouTube)

Dubbed “The Wiggler,” [Sound Werkshop]’s expressive synth centers on the idea of using a flexure as a means to control vibrato and volume. Side-to-side and vertical movement of the flexure is detected with a pair of linear hall effect sensors that feed into the Daisy Seed microcontroller to modify the patch.

The build itself is a large 3D printed base with room for the flexure and a couple of breadboards for prototyping the circuits. The keys are capacitive touch pads, and everything is currently held in place with hot glue. [Sound Werkshop] goes into detail in the video (below the break) on what the various knobs and switches do with an emphasis on how it was designed for ease of use.

If you want to learn more about flexures, be sure to checkout this Open Source Flexure Construction Kit.

Continue reading “A More Expressive Synth Via Flexure”

A series of five cymbals sitting on white and black speckled carpet in front of a green loveseat. Each cymbal is assembled from four printed sections. Their colors from left to right are yellow and grey, red and black, black, teal and black, and white and black. A sixth, grey and black cymbal is sitting in the middle of the loveseat cushion.

Challenging The Limits Of 3D Printing With Cymbals

We’re big believers in 3D printing here at Hackaday, but it’s important to recognize that there are plenty of applications where additive manufacturing (at least, from a desktop machine) just isn’t suitable. But that doesn’t mean we don’t want to see what happens if you try. For example, [The Drum Thing] wanted to test the limits of 3D printing by printing a set of cymbals.

[The Drum Thing] had a friend design a cymbal in CAD and then the printed quarters were glued together. In the name of science, they produced them in six different materials to compare performance. Each cymbal was played for a short period or until it failed, including some very interesting slow motion camera work showing the vibrations traveling through the cymbals.

As one might expect, bashing “wafer thin” pieces of printed plastic with a wooden drumstick didn’t work out well for most of the cymbals, although the TPU, carbon fiber, and nylon cymbals were did largely survive their time in the limelight. The other cymbals all failed, either shattering, cracking, or failing at the glue joints. Based on the video, it seems the same glue was used for all of the cymbals, so making sure to have a better match between material and adhesive could help with the glue failures.

Maybe future testing can involve playing these cymbals with a quadrotor?

Continue reading “Challenging The Limits Of 3D Printing With Cymbals”