Hacking The Soil To Combat Desertification

While the Sahara Desert is an important ecosystem in its own right, its human neighbors in the Sahel would like it to stop encroaching on their environment. [Andrew Millison] took a look at how the people in the region are using “half moons” and zai pits to fight desertification.

With assistance from the World Food Program, people in Niger and all throughout the Sahel have been working on restoring damaged landscapes using traditional techniques that capture water during the rainy season to restore the local aquifer. The water goes to plants which provide forage during the 9 drier months of the year.

The main trick is using pits and contouring of the soil to catch rain as it falls. Give the ground time to absorb the water instead of letting it run off. Not only does this restore the aquifers, it also reduces flooding during during the intense rain events in the area. With the water constrained, plants have time to develop, and a virtuous cycle of growth and water retention allows people to have a more pleasant microclimate as well as enhanced food security. In the last five years, 500,000 people in Niger no longer need long-term food assistance as a result of these resiliency projects.

If this seems familiar, we previously covered the Great Green Wall at a more macro level. While we’re restoring the environment with green infrastructure, can we plant a trillion trees?

Continue reading “Hacking The Soil To Combat Desertification”

This Week In Security: Footguns, Bing Worms, And Gogs

The world of security research is no stranger to the phenomenon of not-a-vulnerability. That’s where a security researcher finds something interesting, reports it to the project, and it turns out that it’s something other than a real security vulnerability. There are times that this just means a researcher got over-zealous on reporting, and didn’t really understand what was found. There is at least one other case, the footgun.

A footgun is a feature in a language, library, or tool that too easily leads to catastrophic mistake — shooting ones self in the foot. The main difference between a footgun and a vulnerability is that a footgun is intentional, and a vulnerability is not. That line is sometimes blurred, so an undocumented footgun could also be a vulnerability, and one possible solution is to properly document the quirk. But sometimes the footgun should really just be eliminated. And that’s what the article linked above is about. [Alex Leahu] takes a look at a handful of examples, which are not only educational, but also a good exercise in thinking through how to improve them.

Continue reading “This Week In Security: Footguns, Bing Worms, And Gogs”

FreeCAD Version 1.0 Released

After 22 years of development, FreeCAD has at long last reached the milestone of version 1.0. On this momentous occasion, it’s good to remember what a version 1.0 is supposed to mean, as also highlighted in the release blog post: FreeCAD is now considered stable and ready for ‘real work’. One of the most important changes here is that the topological naming problem (TNP) that has plagued FreeCAD since its inception has now finally been addressed using Realthunders’ mitigation algorithm, which puts it closer to parity here with other CAD packages. The other major change is that assemblies are now supported with the assembly workbench, which uses the Ondsel solver.

Other changes include an updated user interface and other features that should make using FreeCAD easier and closer in line with industry standards. In the run-up to the 1.0 release we already addressed the nightmare that is chamfering in FreeCAD, and the many overlapping-yet-uniquely-incomplete workbenches, much of which should be far less of a confabulated nightmare in this bright new 1.0 future.

Naturally, the big zero behind the major version number also means that there will still be plenty of issues to fix and bugs to hunt down, but it’s a promising point of progress in the development of this OSS CAD package.

Bioelectronic implants with size reference

Batteries Not Included: Navigating The Implants Of Tomorrow

Tinkerers and tech enthusiasts, brace yourselves: the frontier of biohacking has just expanded. Picture implantable medical devices that don’t need batteries—no more surgeries for replacements or bulky contraptions. Though not all new (see below), ChemistryWorld recently shed new light on these innovations. It’s as exciting as it is unnerving; we, as hackers, know too well that tech and biology blend a fine ethical line. Realising our bodies can be hacked both tickles our excitement and unsettlement, posing deeper questions about human-machine integration.

Since the first pacemaker hit the scene in 1958, powered by rechargeable nickel-cadmium batteries and induction coils, progress has been steady but bound by battery limitations. Now, researchers like Jacob Robinson from Rice University are flipping the script, moving to designs that harvest energy from within. Whether through mechanical heartbeats or lung inflation, these implants are shifting to a network of energy-harvesting nodes.

From triboelectric nanogenerators made of flexible, biodegradable materials to piezoelectric devices tapping body motion is quite a leap. John Rogers at Northwestern University points out that the real challenge is balancing power extraction without harming the body’s natural function. Energy isn’t free-flowing; overharvesting could strain or damage organs. A topic we also addressed in April of this year.

As we edge toward battery-free implants, these breakthroughs could redefine biomedical tech. A good start on diving into this paradigm shift and past innovations is this article from 2023. It’ll get you on track of some prior innovations in this field. Happy tinkering, and: stay critical! For we hackers know that there’s an alternative use for everything!

Raspberry Pi Compute Module 5 Seen In The Wild

Last Thursday we were at Electronica, which is billed as the world’s largest electronics trade show, and it probably is! It fills up twenty airplane-hangar-sized halls in Munich, and only takes place every two years.

And what did we see on the wall in the Raspberry Pi department? One of the relatively new AI-enabled cameras running a real-time pose estimation demo, powered by nothing less than a brand-new Raspberry Pi Compute Module 5. And it seemed happy to be running without a heatsink, but we don’t know how much load it was put under – most of the AI processing is done in the camera module.

We haven’t heard anything about the CM5 yet from the Raspberry folks, but we can’t imagine there’s all that much to say except that they’re getting ready to start production soon. If you look really carefully, this CM5 seems to have mouse bites on it that haven’t been ground off, so we’re speculating that this is still a pre-production unit, but feel free to generate wild rumors in the comment section.

The test board looks very similar to the RP4 CM demo board, so we imagine that the footprint hasn’t changed. (Edit: Oh wait, check out the M2 slot on the right-hand side!)

The CM4 was a real change for the compute module series, coming with a brand-new pinout that enabled them to break out more PCIe lanes. Despite the special connectors, it wasn’t all that hard to work with if you’re dedicated. So if you need more computing power in that smaller form factor, we’re guessing that you won’t have to wait all that much longer!

Thanks [kuro] for the tip, and for walking around Electronica with me.

The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks

Remember Redbox? Those bright red DVD vending machines that dotted every strip mall and supermarket in America, offering cheap rentals when Netflix was still stuffing discs into paper envelopes? After streaming finally delivered the killing blow to physical rentals, Redbox threw in the towel in June 2024, leaving around 34,000 kiosks standing as silent monuments to yet another dead media format.

Last month, we reported that these machines were still out there, barely functional and clinging to life. Now, a company called The Junkluggers has been tasked with the massive undertaking of clearing these mechanical movie dispensers from the American retail landscape, and they’re doing it in a surprisingly thoughtful way. I chatted to them to find out how it’s going.

Continue reading “The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks”

Close-up of a woman's neck with a haptic patch

Hacking Haptics: The 19-Sensor Patch Bringing Touch To Life

On November 6th, Northwestern University introduced a groundbreaking leap in haptic technology, and it’s worth every bit of attention now, even two weeks later. Full details are in their original article. This innovation brings tactile feedback into the future with a hexagonal matrix of 19 mini actuators embedded in a flexible silicone mesh. It’s the stuff of dreams for hackers and tinkerers looking for the next big thing in wearables.

What makes this patch truly cutting-edge? First, it offers multi-dimensional feedback: pressure, vibration, and twisting sensations—imagine a wearable that can nudge or twist your skin instead of just buzzing. Unlike the simple, one-note “buzzers” of old devices, this setup adds depth and realism to interactions. For those in the VR community or anyone keen on building sensory experiences, this is a game changer.

But the real kicker is its energy management. The patch incorporates a ‘bistable’ mechanism, meaning it stays in two stable positions without continuous power, saving energy by recycling elastic energy stored in the skin. Think of it like a rubber band that snaps back and releases stored energy during operation. The result? Longer battery life and efficient power usage—perfect for tinkering with extended use cases.

And it’s not all fun and games (though VR fans should rejoice). This patch turns sensory substitution into practical tech for the visually impaired, using LiDAR data and Bluetooth to transmit surroundings into tactile feedback. It’s like a white cane but integrated with data-rich, spatial awareness feedback—a boost for accessibility.

Fancy more stories like this? Earlier this year, we wrote about these lightweight haptic gloves—for those who notice, featuring a similar hexagonal array of 19 sensors—a pattern for success? You can read the original article on TechXplore here.