Who Owns Arduino?

Who owns Arduino? We don’t mean metaphorically — we’d say that’s the community of users and developers who’ve all contributed to this amazing hardware/software ecosystem. We mean literally. Whose chips are on the table? Whose money talks? It looks like ARM could have a stake!

The Arduino vs Arduino saga “ended” just under a year ago with an out-of-court settlement that created a private holding company part-owned by both parties in the prior dispute over the trademark. And then, [Banzi] and the original founders bought out [Musto]’s shares and took over. That much is known fact.

The murky thing about privately held companies and out-of-court settlements is that all of the details remain private, so we can only guess from outside. We can speculate, however, that buying out half of the Arduino AG wasn’t cheap, and that even pooling all of their resources together, the original founders just didn’t have the scratch to buy [Musto] out. Or as the Arduino website puts it, “In order to make [t]his a reality, we needed a partner that would provide us with the resources to regain full ownership of Arduino as a company… and Arm graciously agreed to support us to complete the operation.” That, and the rest of the Arduino blog post, sure looks like ARM provided some funds to buy back Arduino.

We reached out to [Massimo Banzi] for clarification and he replied:

“Hi arm did not buy nor invest in arduino. The founders + Fabio Violante still own the company. As I wrote in the blog post we are still independent, open source and cross platform.”

We frankly can’t make sense of these conflicting statements, at least regarding whether ARM did or didn’t contribute monetary resources to the deal. ARM has no press release on the deal as we write this. Continue reading “Who Owns Arduino?”

Review: New 3G And Cat-M1 Cellular Hardware From Hologram

In July we reported on the launch of the Hologram developer program that offered a free SIM card and a small amount of monthly cellular data for those who wanted to build connectivity into their prototypes. Today, Hologram has launched some new hardware to go along with that program.

Nova is a cellular modem in a USB thumb drive form factor. It ships in a little box with a PCB that hosts the u-blox cellular module, two different antennas, a plastic enclosure, and a SIM card. The product is aimed at those building connected devices around single-board computers, making it easy to plug Nova in and get connected quickly.

This device that Hologram sent me is a 3G modem. They have something like 1,000 of them available to ship starting today, but what I find really exciting is that there is another flavor of Nova that looks the same but hosts a Cat-M1 version of the u-blox module. This is a Low Power Wide Area Network technology built on the LTE network. We’ve seen 2G and 3G modems available for some time now, but if go that route you’re building a product around a network which has an end-of-life concern.

Cat-M1 will be around for much longer and it is designed to be low power and utilizes a narrower bandwidth for less radio-on time. I asked Hologram for some power comparison estimates between the two technologies:

AVERAGE current consumption comparisons:

Cat-M1: as low as 100 mA while transmitting and never more than 190 mA
Equivalent 3G: as high as 680 mA while transmitting

PEAK current consumption comparisons (these are typically filtered through capacitors so the power supply doesn’t ever witness these values, and they are only momentary):

Cat-M1: Less than 490 mA
Equivalent 3G: As high as 1550 mA

This is an exciting development because we haven’t yet seen LTE radios available for devices — of course there are hotspots but those are certainly not optimized for low power or inclusion in a product. But if you know your ESP8266 WiFi specs you know that those figures above put Cat-M1 on a similar power budget and in the realm of battery-operated devices.

The Cat-M1 Nova can be ordered beginning today, should ship in limited quantities within weeks, with wider availability by the end of the year. If you can’t get one in the first wave, the 3G Nova is a direct stand-in from the software side of things.

I suspect we’ll see a lot of interest in Cat-M1 technology moving forward simply because of the the technology promises lower power and longer support. (I’m trying to avoid using the term IoT… oops, there it is.) For today, let’s take a look at the 3G version of the new hardware and the service that supports it.

Continue reading “Review: New 3G And Cat-M1 Cellular Hardware From Hologram”

SiFive Announces RISC-V SoC

At the Linley Processor Conference today, SiFive, the semiconductor company building chips around the Open RISC-V instruction set has announced the availability of a quadcore processor that runs Linux. We’ve seen RISC-V implementations before, and SiFive has already released silicon-based on the RISC-V ISA. These implementations are rather small, though, and this is the first implementation designed for more than simple embedded devices.

This announcement introduces the SiFive U54-MC Coreplex, a true System on Chip that includes four 64-bit CPUs running at 1.5 GHz. This SoC is built with TSMC’s 28 nm process, and fits on a die about 30 mm². Availability will be on a development board sometime in early 2018, and if our expectations match the reality of SiFive’s previous offerings, you’ll be able to buy this Open SoC as a BGA package some months after that.

Continue reading “SiFive Announces RISC-V SoC”

Impressive Electric Quad Bike

[EV4] is a small Polish company that makes electric vehicles, like this rather cool electric quad It’s an impressive build, including two 1 kW motors and a tilting turning system that makes it more maneuverable than most quad bikes. It has big, wide tires, a raised battery and longitudinal arms that mean it can climb over obstacles. That all makes it great for off-road use, and it’s just 60 cm (just under 24 inches) wide, which is much smaller than most quad bikes. It also has a top speed of 35 km/h, which would make it somewhat illegal to use on the public roads in many places. As someone who can’t ride a two-wheel bike because of a lousy sense of balance, I’d love to build something like this. Has anyone got plans for something similar?

Continue reading “Impressive Electric Quad Bike”

A Bit Of Mainstream Coverage For The Right To Repair

Here at Hackaday, we write for a community of readers who are inquisitive about the technology surrounding them. You wouldn’t be here if you had never taken a screwdriver to a piece of equipment to see what makes it work. We know that as well as delving inside and modifying devices being core to the hardware hacker mindset, so is repairing. If something we own breaks, we try to work out why it broke, and what we can do to fix it.

Unfortunately, we live in an age in which fixing the things we own is becoming ever harder. Manufacturers either want to sell us now hardware rather than see us repair what breaks, or wish to exercise total control over the maintenance of their products. They make them physically impossible to repair, for example by gluing together a cellphone, or they lock down easy-to-repair items with restrictive software, for example tractors upon which every replacement part must be logged on a central computer.

This has been a huge issue in our community for a long time now, but to the Man In The Street it barely matters. To the people who matter, those who could change or influence the situation, it’s not even on the radar. Which makes a piece in the British high-end weekly newspaper The Economist particularly interesting. Entitled “A ‘right to repair’ movement tools up“, it lays out the issues and introduces the Repair Association, a political lobby group that campaigns for “Right to repair” laws in the individual states of the USA.

You might now be asking why this is important, why are we telling you something you already know? The answer lies in the publication in which it appears. The Economist is aimed at politicians and influencers worldwide. In other words, when we here at Hackaday talk about the right to repair, we’re preaching to the choir. When they do it at the Economist, they’re preaching to the crowd who can make a difference. And that’s important.

You may recognise the tractors mentioned earlier as the iconic green-and-yellow John Deere. We’ve written about their DRM before.

Neon sign, All Electronics Service, Portland, Visitor7 [CC BY-SA 3.0].

Get Hands-On At Supercon: Workshop Tickets Now Available

Build something cool and pick up new skills from the workshops at the Hackaday Superconference. Last week we announced all of the talks you’ll find at Supercon, and starting today you can reserve your spot at one of the workshops.

You must have a Superconference ticket in order to purchase a workshop ticket; buy one right now if you haven’t already. You can get mechanical with Haptics and Animatronics, take your product design from schematic to PCB and enclosure, brush up your embedded development on several choices of platform, make cell towers do your bidding, or dump way too many volts into a block of wood.

Space in these workshops is limited so make sure to sign up before all the seats are taken. The base price for workshops is $10 (basically a “skin in the game” price to encourage those who register to show up). Any tickets priced above that base is meant to cover the material expense of the workshop. Here’s what we have planned:

Embedded Programming with Black Magic and the Lights On

Piotr Esden-Tempski

Sunday Afternoon

Embedded systems programming has earned a bad reputation of being difficult to master. Especially in the open-source world, most people associate it with cut and pasted code that is difficult to debug. The usual tools we have to debug embedded systems are a blinking LED and, if we are lucky, printf statements through a serial port. In this self guided workshop we will show you how easy it can be to have full insight into your microcontroller using fully open source tools that are on par with expensive proprietary closed-source solutions.

Fun with High Voltage

Will Caruana

Sunday Morning

This workshop is about making Lichtenberg figures. A Lichtenberg figure is a piece of art though the multiplication of a few thousands of volts to burn wood. We will cover the science behind this art form as well as the safety and lastly we will be getting hands on experience in being able to using high voltage transformers to make these burnings into wood and make coasters you can take home.

Designing Electronic Textures

Noah Feehan

Sunday Afternoon

Participants will learn the physics behind electrovibration, and then get to play/design for it using a new open-source board called WEFT. After the workshop, you’ll know how to deploy electrovibration in your projects, and understand the feeling of different waveforms.

End to End Product Design with Eagle and Fusion 360

Matt Berggren

Saturday Morning

In this session, we’ll take you end to end, from building a new schematic, simulating a circuit using EAGLE’s built-in SPICE simulator, laying out a PCB, generating mfg files and include some tips & tricks for milling boards and making stencils. We’ll also take you thru the link between electronics and mechanics using Fusion360. Alongside EAGLE we’ll build an enclosure and generate the mfg outputs for your mechanical design (CAM, 3D prints, etc). We’ll look at library management across electronics and mechanics and bidirectional synchronization between both of these domains. This is more than an intro, as Matt’s always good for some essential, oft-missed background and tips with EAGLE you might never have known otherwise.

AVR® MCU Effortless Design Workshop: Prototyping with Sensors and BLE

Bob Martin, Senior Staff Engineer

Sunday Morning

This hands-on training session will walk you through how to develop an embedded sensor node prototype with Bluetooth® Low Energy (BLE) connectivity. You will speed through configuration of the AVR microcontroller, sensor interface and communications interface setup by using Atmel Start, a graphical programming interface. This tool will generate libraries with simple APIs so you can spend time working on your solution instead of messing with registers or communication protocols.

Rapid Prototyping and Linux Kernel Development with the PocketBeagle® Platform

Robert Nelson

Saturday Afternoon

The newly introduced PocketBeagle® is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob computer. By leveraging the Octavo SIP, the PocketBeagle offers complete BeagleBoard functionality and includes 512MB DDR3 RAM, 1-GHz ARM Cortex-A8 CPU, 2x 200-MHz PRUs, ARM Cortex-M3, 3D accelerator, power/battery management and EEPROM. The board offers lots of GPIOs, on board peripherals and various expansion capabilities via multiple headers and the Mikroelektronika click board interface. During this course you will learn about pin configuration, how to create a Linux distribution, reconfiguring io on the fly and how to leverage expansion modules. Attendees will leave with their very own PocketBeagle and a couple other surprises as well.

Cellular Connectivity for Your Next Hardware Project

Ben Strahan and Chris Gammell

Saturday Afternoon

Your project shouldn’t be constrained by the range of a WiFi signal. This workshop will show you how to connect to cellular towers via a serial link, get connected into the cloud and reliably start transmitting data. This workshop is suitable for people just getting started in the firmware ecosystem up through advanced firmware engineers. Advanced members of the workshop will have the opportunity to hack their conference badge to connect to cell towers. Sign up for this workshop to add another connection method to your hardware development toolbox.

An Introduction to Animatronics with Laser Cut Tentacle Mechanisms

Joshua Vasquez

Saturday Morning

Animatronics are way cool, but the hacker community rarely ventures farther than a few hobby servos and “dem-blinkin’ LEDs.” In this workshop, I’ll get you cozy with tentacle mechanisms that you can build with just a laser cutter and a few hand tools. There are three big takeaways from this workshop. We’ll build up a two-stage controller reusable in other projects, muscle up our vocabulary of off-the-shelf parts for cable mechanisms, and discover a few laser-cut design techniques.

Superconference workshops tend to sell out extremely quickly. Don’t wait to get your ticket.

FM Snake Feeds Off Radio Waves

[Eric Brasseur] built a radio-detecting snake that consists of a LED that lights up when around reasonably strong radio waves. Near an FM radio mast you’ll find a huge amount of waste energy being dumped out in the 88 to 108 MHz range.

[Eric]’s rig consists of a pair of 1N6263 Schottky diodes, flip-flopped with one set of ends soldered to the antenna and the other ends soldered to the leads of the LED with about a foot of wire in between. The antenna can be a single wire as the diodes are soldered together. This one is around 4 feet in length for a total length of around 160 cm or a little over 5 feet. He went with a red LED just to give it a greater chance of being seen when illuminated by a distant or weak source of radio waves.

Hackaday loves its radio hacks; check out our posts on improving WiFi throughput with FM radio and building a modern DIY FM radio.

[Thanks, Alain!]