Digital License Plates Are Here, But Do We Need Them?

It’s a story as old as time: you need to swap between your custom license plates, but you can’t find a screwdriver and you’re already running late for a big meeting at the Business Factory. You called AAA to see if they could come out and do it for you, but as luck would have it something must be wrong with your phone because the line was disconnected as soon as you explained the situation. As if life in the First World couldn’t get any more difficult.

Luckily, a company called Reviver Auto has come up with a thoroughly modern solution to this age old problem. Assuming you live in Arizona, California, and Michigan and are willing to pay $800 USD (plus a small monthly service fee), you can join the Rplate revolution! Less a license plate and more of a “cool-looking, multi-functional digital display and connected vehicle platform”, the Rplate will ensure you never again find yourself stuck on the side of the road with an unfashionable license plate.

What’s that? You’ve had the same license plate for years, possibly decades, and have never given it much thought? Well, in that case the Rplate might be sort of a tough sell. Did we mention that someday you might be able to display the current weather on it while your car is parked? Of course, if you can see the license plate you’re already outside, so…

This all might sound like an out of season April Fool’s joke, but as far as I can tell from reading the Reviver Auto site and watching their promotional videos, this is essentially the value proposition of their line of Rplate digital license plates. There are some admittedly interesting potential extensions of the technology if they can convince other companies and systems to plug into their ecosystem, but given the cost of the Rplate and the few states in which it’s currently legal to use, that seems far from a given at this point.

But of course we’re fans of weird and wonderful technology here at Hackaday, so we should give this device a fair shake. On the surface it might seem to be a solution looking for a problem, but that’s often said of technology ahead of its time. So what exactly is the Rplate, how does it work, and where does it go from here?

Continue reading “Digital License Plates Are Here, But Do We Need Them?”

Particle Paves Way For LTE Selfies

From cars to refrigerators, it seems as if every new piece of tech is connected to the Internet. For better or for worse, we’re deep into the “Internet of Things”. But what about your camera? No, not the camera in your smartphone; that one’s already connected to the Internet and selling your secrets to the highest bidder. Don’t you think your trusty DSLR could be improved by an infusion of Wide Area Networking?

Regardless of what you’re answer to that question might be, [Thomas Kittredge] decided his life would be improved by making his beloved Canon EOS Rebel T6 an honorary member of the Internet of Things. Truth be told he says that he hasn’t quite figured out an application for this project. But since he was looking to mess around with both the LTE-enabled Particle Boron development board and designing his own PCB for professional production, this seemed a good a way to get his feet wet as any.

The resulting board is a fairly simple “shield” for the Particle Boron that let’s [Thomas] trigger up to two cameras remotely over the Internet or locally with Bluetooth. If LTE isn’t your sort of thing though, don’t worry. Since the Boron follows the Adafruit Feather specification, there’s a whole collection of development boards with various connectivity options that this little add-on can be used with.

In the GitHub repository, [Thomas] has put up the files for the PCB, the STLs for the 3D printed enclosure, and of course the firmware source code to load onto the Particle board. He currently has code to expose the two shutter triggers as functions the the Particle Cloud API, as well as a practical example that fires off the camera when specific words are used in a Slack channel.

Out for a little over a year, the Particle Boron is a fairly new addition to the world of cellular development boards. Historically we haven’t seen a whole lot of cellular capable projects, likely because it’s been such a hassle to get them online, but with new boards like the Boron we might start seeing an uptick in the random pieces of gear that have this form connectivity and an internet-facing IP address. Surely nothing bad could come of this!

Smartphone App Uses AR to Visualize The RF Spectrum

Have you ever wished you could see in the RF part of the radio spectrum? While such a skill would probably make it hard to get a good night’s rest, it would at least allow you to instantly see dead spots in your WiFi coverage. Not a bad tradeoff.

Unwilling to go full [Geordi La Forge] to be able to visualize RF, [Ken Kawamoto] built the next best thing – an augmented-reality RF signal strength app for his smartphone. Built to aid in the repositioning of his router in the post-holiday cleanup, the app uses the Android ARCore framework to figure out where in the house the phone is and overlays a color-coded sphere representing sensor data onto the current camera image. The spheres persist in 3D space, leaving a trail of virtual breadcrumbs that map out the sensor data as you warwalk the house. The app also lets you map Bluetooth and LTE coverage, but RF isn’t its only input: if your phone is properly equipped, magnetic fields and barometric pressure can also be AR mapped. We found the Bluetooth demo in the video below particularly interesting; it’s amazing how much the signal is attenuated by a double layer of aluminum foil. [Ken] even came up with an Arduino with a gas sensor that talks to the phone and maps the atmosphere around the kitchen stove.

The app is called AR Sensor and is available on the Play Store, but you’ll need at least Android 8.0 to play. If your phone is behind the times like ours, you might have to settle for mapping your RF world the hard way.

Continue reading “Smartphone App Uses AR to Visualize The RF Spectrum”

Behind the Scenes at a Pair of Cell Sites

Those who fancy themselves as infrastructure nerds find cell sites fascinating. They’re outposts of infrastructure wedged into almost any place that can provide enough elevation to cover whatever gap might exist in a carrier’s coverage map. But they’re usually locked behind imposing doors and fences with signs warning of serious penalty for unauthorized access, and so we usually have to settle for admiring them from afar.

Some folks, like [Mike Fisher] aka [MrMobile], have connections, though, and get to take an up close and personal tour of a couple of cell sites. And while the video below is far from detailed enough to truly satisfy most of the Hackaday crowd, it’s enough to whet the appetite and show off a little of what goes into building out a modern cell site. [Mike] somehow got AT&T to take him up to a cell site mounted in the belfry and steeple of the 178-year old Unitarian Church in Duxbury, Massachusetts. He got to poke around everything from the equipment shack with its fiber backhaul gear and backup power supplies to the fiberglass radome shaped to look like the original steeple that now houses the antennas.

Next he drove up to Mount Washington in New Hampshire, the highest point in the northeast US and home to a lot of wireless infrastructure. Known for having some of the worst weather in the world and with a recent low of -36°F (-38°C) to prove it, Mount Washington is brutal on infrastructure, to which the tattered condition of the microwave backhaul radomes attests.

We appreciate the effort that went into this video, but again, [Mike] leaves us wanting more details. Luckily, we’ve got an article that does just that.

Continue reading “Behind the Scenes at a Pair of Cell Sites”

Kristin Paget is Hacking Carrier Grade LTE eNodeB

Every once in a while you get lucky and a piece of cool gear lands on your bench to tear down and explore. On that measuring stick, Kristin Paget hit the jackpot when she acquired a fascinating piece of current generation cellphone infrastructure. She’s currently researching a carrier-grade LTE eNodeB and walked through some of the findings, along with security findings of two IoT products, during her talk on the Laws of IoT Security at the 2017 Hackaday Superconference.

Evolved Node B (eNodeB) is the meat and potatoes of the LTE cellular network. It connects the antenna to backhaul — this is not something you’d expect to see on the open market but Kristin managed to pick one up from a vendor at DEF CON. Hearing her walk through the process of testing the hardware is a real treat in her talk and we’ll get to that in just a minute. But first, check out our video interview with Kristin the morning after her talk. We get into the progress of her eNodeB research, and touch on the state of IoT security with advice for hardware developers moving forward.

Continue reading “Kristin Paget is Hacking Carrier Grade LTE eNodeB”

Project Loon Will Float LTE to Puerto Rico

Some of the biggest names in technology have offered their help in rebuilding Puerto Rico’s infrastructure. The newest name on the list? The X division of Alphabet, who want to help fill the huge communications gap using Project Loon, their high-altitude balloon network. It looks like X is going to get their wish, as they have just been granted license from the FCC to deploy LTE cell coverage to both Puerto Rico and the US Virgin Islands.

The plan is to launch 30 balloons that will act as a network of floating cell towers to radiate an LTE signal originating from the ground. This coverage would be a great boon to a devastated communications infrastructure, but it won’t be a cakewalk to implement. Some handsets of both major persuasions will require a temporary over-the-air update before they can use Project Loon’s network. For phones that can’t operate on Band 8, it won’t work at all. Even so, it’s a great start.

Now you would think that an emergency communications restoration plan like this would be met by all parties with open arms and a circle of pats on the back, but this solution requires a lot of cooperation. One of the major hurdles was to secure spectrum rights from some if not all of the incumbent wireless carriers. Miraculously, eight of them have agreed to hand over their bandwidth. Another issue is that the FCC license is only good for six months, although they would probably entertain an extension given the circumstances. Finally, the dual ownership of the Virgin Islands makes the situation even more complicated, as X must agree not to infringe upon the wireless coverage footprint of the British Virgin Islands.

Via r/Futurology

Review: New 3G and Cat-M1 Cellular Hardware from Hologram

In July we reported on the launch of the Hologram developer program that offered a free SIM card and a small amount of monthly cellular data for those who wanted to build connectivity into their prototypes. Today, Hologram has launched some new hardware to go along with that program.

Nova is a cellular modem in a USB thumb drive form factor. It ships in a little box with a PCB that hosts the u-blox cellular module, two different antennas, a plastic enclosure, and a SIM card. The product is aimed at those building connected devices around single-board computers, making it easy to plug Nova in and get connected quickly.

This device that Hologram sent me is a 3G modem. They have something like 1,000 of them available to ship starting today, but what I find really exciting is that there is another flavor of Nova that looks the same but hosts a Cat-M1 version of the u-blox module. This is a Low Power Wide Area Network technology built on the LTE network. We’ve seen 2G and 3G modems available for some time now, but if go that route you’re building a product around a network which has an end-of-life concern.

Cat-M1 will be around for much longer and it is designed to be low power and utilizes a narrower bandwidth for less radio-on time. I asked Hologram for some power comparison estimates between the two technologies:

AVERAGE current consumption comparisons:

Cat-M1: as low as 100 mA while transmitting and never more than 190 mA
Equivalent 3G: as high as 680 mA while transmitting

PEAK current consumption comparisons (these are typically filtered through capacitors so the power supply doesn’t ever witness these values, and they are only momentary):

Cat-M1: Less than 490 mA
Equivalent 3G: As high as 1550 mA

This is an exciting development because we haven’t yet seen LTE radios available for devices — of course there are hotspots but those are certainly not optimized for low power or inclusion in a product. But if you know your ESP8266 WiFi specs you know that those figures above put Cat-M1 on a similar power budget and in the realm of battery-operated devices.

The Cat-M1 Nova can be ordered beginning today, should ship in limited quantities within weeks, with wider availability by the end of the year. If you can’t get one in the first wave, the 3G Nova is a direct stand-in from the software side of things.

I suspect we’ll see a lot of interest in Cat-M1 technology moving forward simply because of the the technology promises lower power and longer support. (I’m trying to avoid using the term IoT… oops, there it is.) For today, let’s take a look at the 3G version of the new hardware and the service that supports it.

Continue reading “Review: New 3G and Cat-M1 Cellular Hardware from Hologram”