Runway-to-Space No More, Reaction Engines Cease Trading

It’s not often that the passing of a medium sized company on an industrial estate on a damp and soggy former airfield in southern England is worthy of a Hackaday mention, but the news of hypersonic propulsion company Reaction Engines ceasing trading a few weeks ago is one of those moments that causes a second look. Their advanced engine technology may have taken decades to reach the point of sustainable testing, but it held the promise of one day delivering true spaceplanes able to take off from a runway and fly to the edge of the atmosphere before continuing to orbit. It seems their demise is due to a failure to secure more funding.

We’ve written about their work more than once in the past, of their hybrid engines and the development of the advanced cooling system required to deliver air to a jet engine working at extreme speeds.  The rights to this tech will no doubt survive the company, and given that its origins lie in a previously canceled British Aerospace project it’s not impossible that it might return. The dream of a short flight from London to Sydney may be on hold for now then.

Writing this from the UK there’s a slight air of sadness about this news, but given that it’s not the first time a British space effort has failed, we should be used to it by now.

Header: Science Museum London / Science and Society Picture Library, CC BY-SA 2.0

Scratch And Sniff Stickers And The Gas Panic Of ’87

Ever wonder how those scratch and sniff stickers manage to pack a punch of aroma into what looks like ordinary paper? The technology behind it is deceptively clever, and has been used everywhere from children’s books to compact discs.

Most Scratch and Sniff stickers are simple nose-based novelties, though they’ve seen other uses as diagnostic tools, too. As Baltimore Gas and Electric discovered in 1987, though, these stickers can also cause a whole lot of hullabaloo. Let’s explore how this nifty technology works, and how it can go—somewhat amusingly—wrong.

The Science

3M developed the scratch and sniff technology in the 1960s. It quickly gained iconic status in the decades that followed. via eBay

At its heart, scratch and sniff technology involves the microencapsulation of tiny smellable particles, which are then impregnated into stickers or other paper products. Microscopic amounts of aromatic materiale are trapped inside gelatin or plastic capsules, and then stuck to paper. When you scratch the surface, these capsules rupture, releasing their aromatic cargo into the air. It’s an elegant feat of materials engineering, originally developed by Gale W. Matson. Working at 3M in the 1960s, he’d been intending to create a new kind of carbonless copy paper.

Scratch and Sniff stickers soon became a popular novelty in the 1970s. The catchy name was perfect—it told you everything you need to know. A children’s book named Little Bunny Follows His Nose was one of the first widespread applications. Released in 1971, it  was entirely based around the whole scratch and sniff concept. Children could read along and scratch various illustrations of peaches, roses and pine needles to see what they smelled like. The book was reprinted multiple times, remaining in publication for over three decades.

Other popular media soon followed. Pop rock band The Raspberries put a scratch and sniff sticker on their album cover in 1972. Director John Waters would go on to release his 1981 film Polyester with an accompanying “Odorama” card, which featured multiple smells for viewers to sniff during the movie. The concept still resurfaces occasionally, though the gimmick is now well-worn. In 2010, Katy Perry’s Teenage Dream album smelled like cotton candy thanks to a scratch-and-sniff treatment on the Deluxe Edition, and King Gizzard & The Lizard Wizard put a similar touch on 2017’s Flying Microtonal Banana. Continue reading “Scratch And Sniff Stickers And The Gas Panic Of ’87”

Stripping GoPros To The Bone For Model Rocketry

The small size of action cameras has made them a great solution for getting high-quality experimental footage where other cameras don’t fit. GoPros are [Joe Barnard]’s camera of choice for his increasingly advanced rockets, but even the smallest models don’t quite fit where he needs them. They also overheat quickly, so in the video after the break, he demonstrates how he strips and customizes them to fit his required form factor.

[Joe] starts out with a GoPro HERO10 Bones, which is a minimalist version intended for FPV drones. He likes the quality of the 4K 120 FPS video and the fact that he can update the settings by simply holding up a QR code in front of the camera. The case appears to be ultrasonically welded, so careful work with a Dremel is required to get it open. The reveals the control board with an aluminum heat sink plate, and the sensor module on a short ribbon cable. For minimal drag[Joe] wants just the lens to poke out through the side of the rocket, so he uses slightly longer aftermarket ribbon cables to make this easier.

The camera’s original cooling design, optimized for drone airflow, meant the device would overheat within 5 minutes when stationary. To increase the run time without the need for an external heat sink, [Joe] opts to increase the thermal mass by adding thick aluminum to the existing cooling plate with a large amount of thermal paste. In an attempt to increase heat transfer from the PCB, he also covers the entire PCB with a thick layer of thermal paste. Many of the video’s commenters pointed out that this may hurt more than it helps because the thermal paste is really intended to be used as a thin layer to increase the contact surface to a heat sink. It’s possible that [Joe] might get better results with just a form-fitting thermal block and minimal thermal paste.

[Joe] is permanently epoxying three of these modified cameras into his latest rocket, which is intended to fly at Mach 3, and touch space. This may look like a waste of three relatively expensive cameras, but it’s just a drop in the bucket of a very expensive rocket build.

We’ve seen GoPros get (ab)used in plenty of creative ways, including getting shot from a giant slingshot, and reaching the edge of space on a rocket and a balloon.

Continue reading “Stripping GoPros To The Bone For Model Rocketry”

Stylized silver text with the the word: "arpa-e" over the further text: "Changing What's Possible"

Uncle Sam Wants You To Recover Energy Materials From Wastewater

The U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) was founded to support moonshot projects in the realm of energy, with a portfolio that ranges from the edge of current capabilities to some pretty far out stuff. We’re not sure exactly where their newest “Notice of Funding Opportunity (NOFO)” falls, but they’re looking for critical materials from the wastewater treatment process. [via CleanTechnica]

As a refresher, critical materials are those things that are bottlenecks in a supply chain that you don’t want to be sourcing from unfriendly regions. For the electrification of transportation and industrial processes required to lower carbon emissions, lithium, cobalt, and other rare earth elements are pretty high on the list.

ARPA-E also has an interest in ammonia-based products which is particularly interesting as industrial fertilizers can wreak havoc on natural ecosystems when they become run off instead of making it into the soil. As any farmer knows, inputs cost money, so finding an economical way to recover those products from wastewater would be a win-win. “For all categories, the final recovered products will need to include at least two targeted high energy-value materials, have greater than 90% recovery efficiency, and be commercially viable in the U.S. market.” If that sounds like the sort of thing you’d like to try hacking on, consider filling out an Applicant Profile.

If you’re curious about where we’re getting some of these materials from right now, checkout our series on Mining and Refining, including the lithium and cobalt ARPA-E wants more of.

Ultra-Wide Gaming Handheld Channels The Nintendo DS

“The Nintendo DS isn’t wide enough!” said nobody, ever. Most players found Nintendo’s form factor to be perfectly acceptable for gaming on the go, after all. Still, that doesn’t mean a handheld gaming rig with a more… cinematic aspect ratio couldn’t be fun! [Marcin Plaza] built just that, with great results.

The initial plan was to build a Steam Deck-like device, but using laptop trackpads instead of joysticks. [Marcin] had a broken Lenovo Yoga 730-13 to use as the basis for the build. That caused the plan to diverge, as the only screen [Marcin] could find that was easily compatible with the laptop’s eDP interface was an ultrawide unit. From there, a clamshell enclosure was designed specifically to rehouse all the key components from the Lenovo laptop. The top half of the clamshell would hold the screen, while the base would feature a small custom keyboard, some buttons, and the aforementioned trackpad. This thing reminds us of the Nintendo DS for multiple reasons. It’s not just the clamshell design—it’s the fact it has a touch control on the lower deck, albeit without a screen.

It’s an original concept for a handheld gaming device, and it makes us wish there were more games built for the ultrawide aspect ratio. This is one project that has us browsing the usual websites to see just what other oddball screens are out there… round screens in a makeup compact clamshell, anyone? Video after the break.

Continue reading “Ultra-Wide Gaming Handheld Channels The Nintendo DS”

Waves crash near a rocky shore. Large, SUV-sized blue "floaters" sit in the water perpendicular to a concrete pier. The floaters look somewhat like a bass boat shrink wrapped in dark blue plastic and attached to a large piston and hinge. A grey SUV sits on the pier, almost as if for scale.

US Is Getting Its First Onshore Wave Power Plant

Renewables let you have a more diverse set of energy inputs so you aren’t putting all your generation eggs in one basket. One type of renewable that doesn’t see a lot of love, despite 80% of the world’s population living within 100 km (~60 mi) of a coastline, is harnessing the energy of the tides. [via Electrek]

“The U.S. Department of Energy’s National Renewable Energy Laboratory estimates that wave energy has the potential to generate over 1,400 terawatt-hours per year,” so while this initial project won’t be huge, the overall possible power generation from tidal power is nothing to sneeze at. Known more for its role in shipping fossil fuels, the Port of Los Angeles will host the new wave power pilot being built by Eco Wave Power and Shell. Eco Wave’s system uses floaters to drive pistons that compress hydraulic fluid and turn a generator before the decompressed fluid is returned to the pistons in a nice, tidy loop.

Eco Wave plans to finish construction by early 2025 and already has the power conversion unit onsite at the Port of Los Angeles. While the press release is mum on the planned install capacity, Eco Wave claims they will soon have 404.7 MW of installed capacity through several different pilot projects around the world.

We covered another Swedish company trying to harness tidal power with underwater kites, and if wave power isn’t your thing but you still like mixing water and electricity, why not try offshore wind or a floating solar farm? Just make sure to keep the noise down!

Receipt paper mural from above eye level

Massive Mural From Thermal Receipt Paper

Turning trash into art is something we undoubtedly all admire. [Davis DeWitt] did just that with a massive mural made entirely from discarded receipt paper. [Davis] got lucky while doing some light dumpster diving, where he stumbled upon the box of thermal paper rolls. He saw the potential them and, armed with engineering skills and a rental-friendly approach, set out to create something original.

The journey began with a simple test: how long can a receipt be printed, continuously? With a maximum length of 10.5 feet per print, [Davis] designed an image for the mural using vector files to maintain a high resolution. The scale of the project was a challenge in itself, taking over 13 hours to render a single image at the necessary resolution for a mural of this size. The final piece is 30 foot (9.144 meters) wide and 11 foot (3.3528 meters) tall – a pretty conversational piece in anyone’s room – or shop, in [Davis]’ case.

Once the design was ready, the image was sliced into strips that matched the width of the receipt paper. Printing over 1,000 feet of paper wasn’t without its issues, so [Davis] designed a custom spool system to undo the curling of the receipts. Hanging the mural involved 3D-printed brackets and binder clips, allowing the strips to hang freely with a kinetic effect.

Though the thermal paper will fade over time, the beauty of this project lies in its adaptability—just reprint any faded strips. Want to see how it all came together? Watch the full process here.

Continue reading “Massive Mural From Thermal Receipt Paper”