The Long, Slow Demise Of DVD-RAM

While CDs were still fighting for market share against cassettes, and gaming consoles were just starting to switch over to CD from cartridge storage, optical media companies were already thinking ahead. Only two years after the introduction of the original PlayStation, the DVD Forum had introduced the DVD-RAM standard: 2.58 GB per side of a disc in a protective caddy. The killer feature? Essentially unlimited re-writeability. In a DVD drive that supports DVD-RAM, they act more like removable hard drive platters. You can even see hard sectors etched into the media at the time of manufacture, giving DVD-RAM its very recognizable pattern.

At the time, floppy drives were still popular, and CD-ROM drives were increasingly available pre-installed in new computers. Having what amounted to a hard drive platter with a total of 5 GB per disc should have been a killer feature for consumers. Magneto-optical drives were still very expensive, and by 1998 were only 1.3 GB in size. DVD-RAM had the same verify-after-write data integrity feature that magneto-optical drives were known for, but with larger capacity, and after the introduction of 4.7 GB size discs, no caddy was required.

Continue reading “The Long, Slow Demise Of DVD-RAM”

Prusa Picks Up The Pace With New MK4S Printer

One of the things you’re paying for when you buy a 3D printer from Prusa Research is, essentially, your next 3D printer. That’s because Prusa’s machines are designed to be upgraded and modified as time goes on. An upgrade kit is always released to allow each older printer to be converted into its successor, and while there’s occasionally been some debate about whether or not it’s the most cost-effective choice, at least it is a choice you have as an owner.

If you’ve got a Prusa MK4, you’ll soon get to make that decision for yourself. Announced earlier today, the new MK4S brings some notable changes to last year’s printer. The $99 upgrade is scheduled to be available by the end of the month for existing owners, but if you’ve been on the fence about joining Team Orange and Black, you can purchase the MK4S right now in both kit and assembled forms for the same price ($799 and $1,099 respectively) as the previous MK4.

Continue reading “Prusa Picks Up The Pace With New MK4S Printer”

A giemsa stained blood smear from a person with beta thalassemia (Credit: Dr Graham Beards, Wikimedia Commons)

Potential Cure For All Of England’s Beta Thalassemia Patients Within Reach

Beta thalassemia and sickle cell are two red blood cell disorders which both come with massive health implications and shortened lifespans, but at least for UK-based patients the former may soon be curable with a fairly new CRISPR-Cas9 gene therapy (Casgevy) via the UK’s National Health Service (NHS). Starting with the NHS in England, the therapy will be offered to the approximately 460 β thalassemia patients in that part of the UK at seven different NHS centers within the coming weeks.

We previously covered this therapy and the way that it might offer a one-time treatment to patients to definitely cure their blood disorder. In the case of β thalassemia this is done by turning off the defective adult hemoglobin (HbA) production and instead turning the fetal hemoglobin (HbF) production back on. After eradicating the bone marrow cells with the defective genes, the (externally CRISPR-Cas9 modified) stem cells are reintroduced as with a bone marrow transplant. Since this involves the patient’s own cells, no immune-system suppressing medication is necessary, and eventually the new cells should produce enough HbF to allow the patient to be considered cured.

So far in international trials over 90% of those treated in this manner were still symptom-free, raising the hope that this β thalassemia treatment is indeed a life-long cure.

Top image: A giemsa stained blood smear from a person with beta thalassemia. Note the lack of coloring. (Credit: Dr Graham Beards, Wikimedia Commons)

Video Game Preservation – Stop Killing Games!

It’s been an ongoing issue for years now. People who buy video games, especially physical copies, expect to be able to play that game at their leisure, no matter how old their console gets. This used to be a no-brainer: think about the SNES or Genesis/Mega Drive from the late 80s and early 90s. You can still buy one today and play the games without any issues. Not so with many modern, internet-connected games that rely on communication with servers the publishers own, whether or not the online features are necessary for gameplay. Stop Killing Games is a new initiative in the EU and worldwide to get enough valid petition signatures to force the issue to be brought up in parliaments all over the world, including the EU Parliament.

An increasing number of videogames are sold as goods, but designed to be completely unplayable for everyone as soon as support ends. The legality of this practice is untested worldwide, and many governments do not have clear laws regarding these actions. It is our goal to have authorities examine this behavior and hopefully end it, as it is an assault on both consumer rights and preservation of media.

StopKillingGames.com

Why now? Well, Ubisoft recently killed a popular videogame called The Crew by taking down the servers that support the game. Without these servers, the game is completely useless. France and many other European countries have strong consumer protection laws which, in theory, should prevent companies from pulling stunts like this, but this particular situation has never been tested in court. Besides this, the group are also petitioning governments around the world, including France (where Ubisoft is based), Germany, Canada, the UK, the US, Australia, and Brazil, and also options for anywhere else in the EU/world.

If you’re a gamer, and especially if you play video games which use online components, it’s definitely worth reading through their website. The FAQ section in particular answers a lot of questions. In any case, we wish them luck as the preservation of media is a very important topic!

[Thanks to Jori for the tip!]

This Week In Security: GhostWrite, Localhost, And More

You may have heard some scary news about RISC-V CPUs. There’s good news, and bad news, and the whole thing is a bit of a cautionary tale. GhostWrite is a devastating vulnerability in a pair of T-Head XuanTie RISC-V CPUs. There are also unexploitable crashes in another T-Head CPU and the QEMU soft core implementation. These findings come courtesy of a group of researchers at the CISPA Helmholtz Center for Information Security in Germany. They took at look at RISC-V cores, and asked the question, do any of these instructions do anything unexpected? The answer, obviously, was “yes”.

Undocumented instructions have been around just about as long as we’ve had Van Neumann architecture processors. The RISC-V ISA put a lampshade on that reality, and calls them “vendor specific custom ISA extensions”. The problem is that vendors are in a hurry, have limited resources, and deadlines wait for no one. So sometimes things make it out the door with problems. To find those problems, CISPA researchers put together a test framework is called RISCVuzz, and it’s all about running each instruction on multiple chips, and watching for oddball behavior. They found a couple of “halt-and-catch-fire” problems, but the real winner (loser) is GhostWrite.

Now, this isn’t a speculative attack like Meltdown or Spectre. It’s more accurate to say that it’s a memory mapping problem. Memory mapping helps the OS keep programs independent of each other by giving them a simplified memory layout, doing the mapping from each program to physical memory in the background. There are instructions that operate using these virtual addresses, and one such is vs128.v. That instruction is intended to manipulate vectors, and use virtual addressing. The problem is that it actually operates directly on physical memory addresses, even bypassing cache. That’s not only memory, but also includes hardware with memory mapped addresses, entirely bypassing the OS. This instruction is the keys to the kingdom. Continue reading “This Week In Security: GhostWrite, Localhost, And More”

Raspberry Has A New Pico, Built With The New RP2350

Raspberry Pi’s first foray into the world of microcontrollers, the RP2040, was a very interesting chip. Its standout features were the programmable input/output units (PIOs) which enabled all sorts of custom real-time shenanigans. And that’s not to discount the impact of the Pi Pico, the $4 dev kit built around it.

Today, they’re announcing a brand-new microcontroller: the RP2350. It will come conveniently packaged in the new Pi Pico 2, and there’s good news and bad news. The good news is that the new chip is better in every way, and that the Pico form factor will stay the same. The bad news? It’s going to cost 25% more, coming in at $5. But in exchange for the extra buck, you get a lot.

For starters, the RP2350 runs a bit faster at 150 MHz, has double the on-board RAM at 520 kB, and twice as much QSPI flash at 4 MB. And those sweet, sweet PIOs? Now it has 12 instead of just 8. (Although we have no word yet if there is more program space per PIO – even with the incredibly compact PIO instruction set, we always wanted more!)

Two flavors on the same chip: Arm and RISC

As before, it’s a dual-core chip, but now the cores are Arm Cortex M33s or RISC-V Hazard3s. Yes, you heard that right, there are two pairs of processors on board. Raspberry Pi says that you’ll be able to select which style of cores runs either by software or by burning one-time fuses. So it’s not a quad core chip, but rather your choice of two different dual cores. Wild!

Raspberry Pi is also making a big deal about the new Arm TrustZone functionality. It has signed boot, 8 kB of OTP key-storage memory, SHA-256 acceleration, a hardware RNG, and “fast glitch detectors”. While this is probably more aimed at industry than at the beginning hacker, we’re absolutely confident that some of you out there will put this data-safe to good use.

There is, as of yet, no wireless built in. We can’t see into the future, but we can see into the past, and we remember that the original Pico was wireless for a few months before they got the WiFi and Bluetooth radio added into the Pico W. Will history repeat itself with the Pico 2?

We’re getting our hands on a Pico 2 in short order, and we’ve already gotten a sneak peek at the extensive software toolchain that’s been built out for it. All the usual suspects are there: Picotool, TinyUSB, and OpenOCD as we write this. We’ll be putting it through its paces and writing up all the details next week.

I2C For Hackers: The Basics

You only really need two data wires to transfer a ton of data. Standards like UART, USB2, I2C, SPI, PS/2, CAN, RS232, SWD (an interface to program MCUs), RS485, DMX, and many others, all are a testament to that. In particular, I2C is such a powerful standard, it’s nigh omnipresent – if you were to somehow develop an allergy to I2C, you would die.

Chances are, whatever device you’re using right now, there’s multiple I2C buses actively involved in you reading this article. Your phone’s touchscreen is likely to use I2C, so is your laptop touchpad, most display standards use I2C, and power management chips are connected over I2C more often than not, so you’re covered even if you’re reading this on a Raspberry Pi! Basically everything “smart” has an I2C port, and if it doesn’t, you can likely imitate it with just two GPIOs.

If you’re building a cool board with a MCU, you should likely plan for having an I2C interface exposed. With it, you can add an LCD screen with a respectable resolution or a LED matrix, or a GPS module, a full-sized keyboard or a touchpad, a gesture sensor, or a 9 degree of freedom IMU – Inertial Measurement Unit, like a accelerometer+compass+gyroscope combination. A small I2C chip can help you get more GPIOs for your MCU or CPU, or a multi-channel motor driver, or a thermal camera, or a heap of flash memory; if you’re adding some sort of cool chip onto your board, it likely has an I2C interface to let you fine-tune its fancy bits.

As usual, you might have heard of I2C, and we sure keep talking about it on Hackaday! There’s a good few long-form articles about it too, both general summaries and cool tech highlights; this article is here to fill into some gaps and make implicit knowledge explicit, making sure you’re not missing out on everything that I2C offers and requires you to know!

Continue reading “I2C For Hackers: The Basics”