Developing The First ICs In Orbit

Over six decades of integrated circuit production we’ve become used to their extreme reliability and performance for a very reasonable price. But what about those first integrated circuits from the early 1960s? Commercial integrated circuits appeared in 1961, and recently Texas Instruments published a fascinating retrospective on the development of their first few digital ICs.

TI’s original IC product on the market was the SN502, a transistor flip-flop that debuted at $450 (about $4100 today), which caught the interest of NASA engineers who asked for logic functions with a higher performance level. The response was the development of the 51 series of logic chips, whose innovation included on-chip interconnects replacing the hand interconnects of the SN502. Their RCTL logic gave enough performance and reliability for NASA to use, and in late 1963 the Explorer 18 craft carried a telemetry system using the SN510 and SN514 chips into orbit. 52 and 53 series chips quickly followed, then in 1964 the 54 series TTL chips which along with their plastic-encapsulated 74 series equivalents are still available today.

Considering that in 1961 the bleeding edge of integrated circuit logic technology was a two-transistor chip with hand interconnects, it seems scarcely conceivable that by ten years later in 1971 the art had advanced to the point at which the first commercially available microprocessors would be produced. It’s unlikely that many of us will stumble upon any of the three-figure SN1-series logic chips, but to read about them is a fascinating reminder of this pivotal moment in the history of electronics.

Header: Mister rf, CC BY-SA 4.0.

Clever PCB Brings Micro USB To The Arduino Uno

Even with more and more devices making the leap to USB-C, the Arduino Uno still proudly sports a comparatively ancient Type-B port. It wouldn’t be a stretch to say that many Hackaday readers only keep one of these cables around because they’ve still got an Uno or two they need to plug in occasionally.

Looking to at least move things in the right direction, [sjm4306] recently set out to create a simple board that would let him mount a micro USB connector in place of the Uno’s original Type-B. Naturally there are no components on the PCB, it simply adapts the original through-hole footprint to the tight grouping of surface mount pads necessary to mount a female micro USB port.

Making castellated holes on the cheap.

The design is straightforward, but as [sjm4306] explains in the video below, there’s actually more going on here than you might think. Looking to avoid the premium he’d pay to have the board house do castellated holes, he cheated the system a bit by having the board outline go right through the center of the standard pads.

Under a microscope, you can see the downside of this approach. Some of the holes got pretty tore up as the bit routed out the edges of the board, with a few of them so bad [sjm4306] mentions there might not be enough of the pad left to actually use. But while they may not be terribly attractive, most of them were serviceable. To be safe, he says anyone looking to use his trick with their own designs should order more boards than they think they’ll actually need.

Of course you could go all the way and retrofit the Uno with a USB-C port, as we’ve seen done with devices in the past. But the latest-and-greatest USB interface can be a bit fiddly, especially with DIY gadgets, so we can’t blame him for going with the more reliable approach.

Continue reading “Clever PCB Brings Micro USB To The Arduino Uno”

Making Custom Curved Mirrors At Home

Generally speaking, creating custom mirrors is a complex task that involves a lot of careful grinding, and isn’t something to be taken lightly if you need precision results. Just ask the folks who provided NASA with a wonky mirror for the Hubble. But assuming you’re not working on an orbital space telescope (or even a ground based one, for that matter), [volzo] has recently documented some techniques for producing single and double curved mirrors of reasonable quality using common workshop tools.

The first step is finding something that’s a bit easier to work with than glass. After testing various reflective materials such as PVC foil and painted PETG sheets by comparing the reflections of projected test patterns, [volzo] found that laminated polystyrene gave the most accurate results. If you just want to make a simple bent mirror, he shows how you can pop one of these sheets on a CNC router, make the appropriate cuts, and fold them into shape.

That part might seem a bit obvious, but what about a more complex shape? Here, [volzo] points to how the thin sheets of polystyrene also lend themselves to vacuum forming. As demonstrated in the video below, all it takes is a 3D printed plug and some basic equipment to rapidly produce mirrors in arbitrary shapes.

Now obviously the optical properties of such mirrors will leave something to be desired, but depending on your application, that might not be such a big deal. As examples [volzo] shows off a few projects using these custom mirrors, such as a tabletop camera that captures both sides of the table simultaneously and a circular projector. Laminated polystyrene could potentially even be used to create low-cost variable mirrors.

Continue reading “Making Custom Curved Mirrors At Home”

Will We Soon Be Running Linux On SiFive Cores Made By Intel?

There’s an understandably high level of interest in RISC-V processors among our community, but while we’ve devoured the various microcontroller offerings containing the open-source core it’s fair to say we’re still waiting on the promise of more capable hardware for anything like an affordable price. This could however change, as the last week or so has seen a flurry of interest surrounding SiFive, the fabless semiconductor company that has pioneered RISC-V technology. Amid speculation of a $2 billion buyout offer from the chip giant Intel it has been revealed that the company best known for the x86 line of processors has licensed the SiFive portfolio for its 7nm process. This includes their latest and fastest P550 64-bit core, bringing forward the prospect of readily available high-power RISC-V computing. Your GNU/Linux box could soon have a processor implementing an open-source ISA, without compromising too much on speed and, we hope, price.

All this sounds pretty rosy, but there is of course a downer for open-source hardware enthusiasts. These chips may rely on some open-source technologies, but sadly they will not themselves be open-source chips as there will be plenty of proprietary IP contained within them. We can thus only hope that Intel see fit to provide the same level of Linux support for them as they do for their x86 ranges, and we’re not left in the same situation with respect to ongoing support as we are with so many other chips. Meanwhile it’s worth remembering that SiFive are not the only player in the world of RISC-V cores, so it’s likely that competitors to the P550 and its stablemates will not be far behind.

If you’d like a more in-depth explanation of the true open-source nature of a RISC-V chip, we’ve featured something on that theme before.

Header image: Gareth Halfacree, CC BY-SA 2.0.

3D Printed Mecanum Wheels For Hoverboard Motors

At this point, somebody taking the motors out of a cheap “hoverboard” and using them to power a scooter or remote controlled vehicle isn’t exactly a new idea. But in the case of the FPV rover [Proto G] has been working on, his choice of motors is only part of the story. The real interesting bit is the 3D printed omnidirectional Mecanum wheels he’s designed to fit the motors, which he thinks could have far reaching applications beyond his own project.

Now, that isn’t to say that the rover itself isn’t impressive. All of the laser cutting and sheet metal bending was done personally by [Proto G], and we love the elevated GoPro “turret” in the front that lets him look around while remotely driving the vehicle. Powered by a pair of Makita cordless tool batteries and utilizing hobby-grade RC parts, the rover looks like it would be a fantastic robotic platform to base further development on.

The Mecanum wheels themselves are two pieces, and make use of rollers pulled from far smaller commercially available wheels. This is perhaps not the most cost effective approach, but compared to the alternative of trying to print all the rollers, we see the advantage of using something off-the-shelf. If you’re not sure how to make these weird wheels work for you, [Proto G] has also released a video explaining how he mixes the RC channels to get the desired omnidirectional movement from the vehicle.

If you’re content with more traditional wheeled locomotion, we’ve previously seen how quickly a couple of second-hand hoverboards can be turned into a impressively powerful mobile platform for whatever diabolical plans you may have.

Continue reading “3D Printed Mecanum Wheels For Hoverboard Motors”

New Part Day: RP2040 Chips In Single Unit Quantities

Since the launch of the Raspberry Pi Pico back in January the little board with its newly-designed RP2040 microcontroller has really caught the imagination of makers everywhere, and we have seen an extremely impressive array of projects using it. So far the RP2040 has only been available on a ready-made PCB module, but we have news today direct from Eben Upton himself that with around 600k units already shipped, single-unit sales of the chip are commencing via the network of Raspberry Pi Approved Resellers.

This news will doubtless result in a fresh explosion of clever projects using the chip, but perhaps more intriguingly it will inevitably result in its appearance at the heart of a new crop of niche products that go beyond simple clones of the Pico in different form factors. The special ingredient of those two PIO programmable state machines to take the load of repetitive tasks away from the cores raises it above being merely yet another microcontroller chip, and we look forward to that feature being at their heart.

The Broadcom systems-on-chip that power Raspberry Pi’s existing range of Linux-capable boards have famously remained unavailable on their own, meaning that this move to being a chip vendor breaks further new ground for the Cambridge-based company. It’s best not to think of it in terms of their entering into competition with the giants of the microcontroller market though, because a relative minnow such as the RP2040 will be of little immediate concern to the likes of Microchip, ST, or TI. A better comparison when evaluating the RP2040’s chances in the market is probably Parallax with their Propeller chip, in that here is a company with a very solid existing presence in the education and maker markets seeking to capitalise on that experience by providing a microcontroller with that niche in mind. We look forward to seeing where this will take them, and we’d hope to eventually see a family of RP2040-like chips with different package and on-board peripheral options.

New Part Day: ESP32-WROOM-DA

We’re always interested in the latest from the world’s semiconductor industry here at Hackaday, but you might be forgiven for noticing something a little familiar about today’s offering from Espressif. The ESP32-WROOM-DA has more than a passing resemblance to the ESP32-WROOM dual-core-microcontroller-with-WiFi  module that we’ve seen on so many projects over the last few years because it’s a WROOM, but this one comes with a nifty trick to deliver better WiFi connectivity.

The clever WiFi trick comes in the form of a pair of antennas at 90 degrees to each other. It’s a miniaturised version of the arrangement with which you might be familiar from home routers, allowing the device to select whichever antenna gives the best signal at any one time.

We can see that the larger antenna footprint will require some thought in PCB design, but otherwise the module has the same pinout as the existing WROVER. It’s not much of a stretch to imagine it nestled in the corner of a board at 45 degrees, and we’re sure that we’ll see it appearing in projects directly. Anything that enhances the connectivity of what has become the go-to wireless microcontroller on these pages can only be a good thing.