Visualization Of A Phased Array Antenna System

Phased array antenna systems are at the cusp of ubiquity. We now see Multiple-Input Multiple-Output (MIMO) antenna systems on WiFi routers. Soon phased array weather radar systems will help to predict the weather and keep air travel safe, and phased array base stations will be the backbone of 5G which is the next generation of wireless data communication.  But what is a phased array antenna system?  How do they work?  With the help of 1024 LEDs we’ll show you.

Continue reading “Visualization Of A Phased Array Antenna System”

Junkyard Dish Mount Tracks Weather Satellites

There’s a magnificent constellation of spacecraft in orbit around Earth right now, many sending useful data back down to the surface in the clear, ready to be exploited. Trouble is, it often takes specialized equipment that can be a real budget buster. But with a well-stocked scrap bin, a few strategic eBay purchases, and a little elbow grease, a powered azimuth-elevation satellite dish mount can become affordable.

The satellites of interest for [devnulling]’s efforts are NOAA’s Polar-orbiting Operational Environmental Satellites (POES), a system of low-Earth orbit weather birds. [devnulling] is particularly interested in direct reception of high-definition images from the satellites’ L-band downlink. The mount he came up with to track satellites during lengthy downloads is a tour de force of junkyard build skills.

The azimuth axis rotates on a rear wheel bearing from a Chevy, the elevation axis uses cheap pillow blocks, and the frame is welded from scrap angle iron and tubing. A NEMA-23 stepper with 15:1 gearhead rotates the azimuth while a 36″ linear actuator takes care of elevation. The mount has yet to be tested in the wind; we worry that sail area presented by the dish might cause problems. Here’s hoping the mount is as stout as it seems, and we’ll look forward to a follow-up.

It would work for us, but a 4-foot dish slewing around in the back yard might not be everyone’s taste in lawn appurtenances. If that’s you and you still want to get your weather data right from the source, try using an SDR dongle and chunk of wire.

Continue reading “Junkyard Dish Mount Tracks Weather Satellites”

Listen To The Globe

There was a time when electronic hackers (or hobbyist, enthusiasts, geeks, or whatever you want to be called) were better than average at geography. Probably because most of us listened to shortwave radio or even transmitted with ham radio gear. These days, if you try listening to shortwave, you have to be pretty patient. Unless you want to hear religious broadcasters or programming aimed at the third world, there’s not much broadcast traffic to listen to anymore

The reason, of course, is the Internet. But we’ve often thought that it isn’t quite the same. When you tuned in London on your homebrew regenerative receiver, you wanted to know where that voice was coming from, and you couldn’t help but learn more about the area and the people who live there. Tune into a BBC live stream on the Internet, and it might as well be any other stream or podcast from anywhere in the world.

The New Shortwave

Maybe we need to turn kids on to Radio Garden. Superficially, it isn’t a big deal. Another catalog of streaming radio stations. You can find plenty of those around. But Radio Garden has an amazing interface (and a few other unique features). That interface is a globe. You can see dots everywhere there’s a broadcast station and with a click, you are listening to that station. The static and tuning noises are a nice touch.

Continue reading “Listen To The Globe”

Run Your Own Numbers Station

Numbers stations are shortwave stations that broadcast cryptic messages that are widely assumed to be used for communications between nation states and spies. But who’s to say it’s up to the government to have all the fun? If you’ve always dreamed of running your own spy ring, you’ll need a way to talk to them too. Start with this guide on how to run your own numbers station.

The requirements are simple – you just need random numbers, one time pads for each recipient (available from our store!) and a way to send the audio – ideally a powerful shortwave transmitter, but for an intelligence agency on a budget, online streaming will work. Then you’re ready to send your message. [Jake Zielke] shares techniques on how to easily encode a message into numbers for transmission, and how to encrypt them with one time pad techniques. Done properly, this is an unbreakable form of encryption. [Jake] then rounds out the guide with tips on how to format your station’s transmissions to address multiple secret agents effectively.

It’s a great way to get started in the world of spooky secret radio communications. All the tools needed to get started are available on the page, so you’ll be up and running in no time. Meanwhile, why not do a little more research on the history of numbers stations?

Micro Radio Time Station Keeps Watch In Sync

The US National Institute of Standards and Technology (NIST) broadcasts atomic clock time signals from Fort Collins, Colorado on various frequencies. The WWVB signal on 60 kHz blasts out 70,000 watts that theoretically should reach the entire continental US. Unfortunately for [Anish Athalye], the signals do not reach his Massachusetts dorm, so he built this GPS to WWVB converter to keep his Casio G-Shock self-setting watch on track.

Not a repeater but a micro-WWVB transmitter, [Anish]’s build consists of a GPS receiver module and an ultra low-power 60kHz transmitter based on an ATtiny44a microcontroller’s hardware PWM driving a ferrite rod antenna. It’s not much of a transmitter, but it doesn’t need to be since the watch is only a few inches away. That also serves to keep the build in compliance with FCC regulations regarding low-power transmissions. Heavy wizardry is invoked by the software needed to pull time data off the GPS module and convert it to WWVB time code format, with the necessary time zone and Daylight Savings Time corrections. Housed in an attractive case, the watch stand takes about three minutes to sync the watch every night.

[Anish] offers some ideas for improving the accuracy, but we think he did just fine with this build. We covered a WWVB signal spoofer before, but this build is far more polished and practical.

B Battery Takes A 9V Cell

Old American radios (and we mean really old ones) took several kinds of batteries. The A battery powered the filaments (generally 1.5V at a high current draw). The B battery powered the plate (much lower current, but a higher voltage–typically 90V). In Britain these were the LT (low tension) and HT (high tension) batteries. If you want to rebuild and operate old radios, you have to come up with a way to generate that B voltage.

Most people opt to use an AC supply. You can daisy-chain a bunch of 9V batteries, but that really ruins the asthetics of the radio. [VA3NGC] had a better idea: he built a reproduction B battery from a wooden box, some brass hardware, a nixie tube power supply, and a 9V battery (which remains hidden). There’s also a handful of zener diodes, resistors, and capacitors to allow different taps depending on the voltage required.

b-battery-in-useThe project looks great. The wooden box apparently was a recycle item and the brass hardware makes it look like it belongs with the old radios it powers. This is a good example of how there’s more to vintage restoration than just the electronics. Sure, the function is important, but to really enjoy the old gear, the presentation is important, too.

Not all tube radios took 90V B+, but since this battery has taps, that isn’t a problem. The old Radio Shack P-Box kit took 22.5V. Of course, if you are going to build your own battery, maybe you ought to build your own triodes, too.

Get On 10 GHz For 3 Euros

A frequent complaint you will hear about amateur radio is that it is a chequebook pursuit. Of course you can work the incredible DX if you spend $20k on a high-end radio, big antenna, and associated components. The reality is though that because it’s such a multi-faceted world there are many ways into it of which the operator with the shiny rig is taking only one.

On the commonly used HF and VHF bands at the lower end of the radio spectrum you will definitely find chequebook amateurs of the type described in the previous paragraph. But as you ascend into the microwave bands there are no shiny new radios on the market, so even the well-heeled licensee must plow their own furrow and build their own station.

You might think that this would remain a chequebook operation of a different type, as exotic microwave devices are not always cheap. But in fact these bands have a long history of extremely inexpensive construction, in which skilled design and construction as well as clever re-use of components from satellite TV systems and Doppler radar modules play a part. And it is a project following this path that is our subject today, for [Peter Knol, PA1SDB] has repurposed a modern Doppler radar module as a transmitter for the 10GHz or 3cm amateur band (Google Translate version of Dutch original). The best bit about [Peter]’s project is the price: these modules can be had for only three Euros.

Years ago a Doppler module would have used a Gunn diode in a waveguide cavity and small horn, usually with an adjacent mixer diode for receiving. Its modern equivalent uses a transistor oscillator on a PCB, with a dielectric resonator and a set of patch antennas. There is also a simple receiver on board, but since [Peter] is using a converted ten-Euro satellite LNB for that task, it is redundant.

He takes us through the process of adjusting the module’s frequency before showing us how to mount it at the prime focus of a parabolic antenna. FM modulation comes via a very old-fashioned transformer in the power feed. He then looks at fitting an SMA connector and using it for more advanced antenna set-ups, before experimenting with the attenuating properties of different substances. All in all this is a fascinating read if you are interested in simple microwave construction.

The result is not the most accomplished 10 GHz station in the world, but it performs adequately for its extremely low price given that he’s logged a 32 km contact with it.

Though we cover our fair share of amateur radio stories here at Hackaday it’s fair to say we haven’t seen many in the microwave bands. If however you think we’ve been remiss in this area, may we point you to our recent coverage of a microwave radio receiver made from diamond?

Via Southgate ARC.