How Do You Build A Tradition?

I was struck by reading our writeup of the Zenit in Electronics contest – an annual event in the Slovak Republic – that it’s kind of like a decathlon for electronic engineers and/or hardware hackers. It’s a contest, in which students compete presumably initially on a local level, and then up to 32 at the national level. There’s a straight-up knowledge test, a complex problem to solve, and then a practical component where the students must actually fabricate a working device themselves, given a schematic and maybe some help. Reading through the past writeups, you get the feeling that it’s both a showcase for the best of the best, but also an encouragement for those new to the art. It’s full-stack hardware hacking, and it looks like a combination of hard work and a lot of fun.

What’s most amazing is that it’s in its 38th year. Think how much electronics, not to mention geopolitics, has changed in the last 40 years. But yet the Zenit competition still lives on. Since it’s mostly volunteer driven, with strong help from the Slovak electronics industry, it has to be a labor of love. What’s astounding to me is that this love has been kept alive for so long.

I think that part of the secret is that, although it’s a national competition, it’s possible to run it with a small yet dedicated crew. It’s certainly a worthwhile endeavor – I can only imagine how many young students’ lives have been impacted by the exposure to microelectronics hacking through the contest. Indeed, it’s telling that the current chairman of the competition, Daniel Valúch, was a competitor himself back in 1994.

I wonder if the people founding Zenit back in 1984 thought of themselves as creating a perpetual electronic engineering contest, or if they just wanted to try it out and it took on a life of its own? Could you start something like this today?

AI Creates Your Spreadsheets, Sometimes

We’ve been interested in looking at how AI can process things other than silly images. That’s why the “Free AI Bot that Generates the Excel Formula for Any Problem” caught our eye. Based on GPT-3, it supposedly transforms your problem description into a formula suitable for Excel or Google Sheets.

Our first prompt didn’t work out very well. But that was sort of our fault. When they say “Excel formula” they mean that quite literally. So trying to describe the actual result you want in terms of columns or rows seems to be beyond it. Not realizing that, we asked:

If the sum of column H is greater than 50, multiply column A by 0.33

And got:

=IF(SUM(H:H)>50,A*0.33,0)

A Better Try

Which is close, but not really how anyone even mildly proficient with Excel would interpret that request. But that’s not fair. It really needs to be a y=f(x) sort of problem, we suppose.

Continue reading “AI Creates Your Spreadsheets, Sometimes”

Learning By Playing

Summer break has started over here, and my son went off to his first of a few day-camp-like activities last week. It was actually really cool – a workshop held by our local Fablab where they have the kids make a Minecraft building and then get to 3D-print it out. He loves playing and building in Minecraft, so we figured this would be right up his alley.

TinkerCAD model of a Lego Minecraft fox. Kiddo trifecta!

I had naively thought that it would work something like this: the kids build something in Minecraft, and then some software extracts the build and converts it into an STL file. Makes sense, because they already are more-or-less fluent in Minecraft modelling. And as I thought about that, it was a pretty clever idea.

But the truth was even sneakier. They warmed up by making something in Minecraft, then they opened up TinkerCAD, which was new to all of the kids, and built a 3D model there. Then they converted the TinkerCAD models into Minecraft, and played with what they had just built while the 3D printers hummed away.

The kids didn’t even flinch at having to learn a new 3D modelling tool, and the parallels to what they were already comfortable doing in Minecraft were obvious to them. My son came home and told me how much easier it was to do your 3D modelling in “this other Minecraft” – he meant TinkerCAD – because you don’t need to build everything out of single blocks. He thought he was playing games, but he’d secretly used his first CAD tool. Nice trick!

Then I look back and realize how much I must have learned about computers through playing as a kid. Heck, how much I still learn through playing. And of course I’m not alone – that’s one of the things that shines through in a large number of the projects we feature. Hack on and have fun!

Ask Hackaday: What Was Your First Electronics Win?

Back in high school, I joined the stage crew — because of course I did. As student theater groups go, it was pretty active, and with two shows to produce each year, there was always a lot of work to do. I gravitated to the lighting crew, which was a natural fit for me. Besides the electrical part of the job, there was also a lot of monkeying around on scaffolding and rickety ladders to hang the lights, which was great fun for the young and immortal. Plus there was the lighting console to run during performances, a job I eventually took over for my last two years.

Unfortunately, the lighting system was a bit pathetic. The console was mounted in the stage right wings, rather than out in the front of the house where a sensible person would put it. And despite being only about ten years old, the dimmers were already starting to fail. The board had about 20 channels, but you could always count on one of the channels failing, sometimes during a show, requiring some heroics to repatch the lights into one of the dimmers we always left as a spare, just for the purpose.

Continue reading “Ask Hackaday: What Was Your First Electronics Win?”

Demonstrate Danger, Safely

Dan Maloney and I were talking about the chess robot arm that broke a child’s finger during the podcast, and it turns out that we both have extreme respect for robot arms in particular. Dan had a story of a broken encoder wheel that lead to out-of-control behavior that almost hit him, and I won’t even get within striking distance of the things unless I know they’re powered off after seeing what programming errors in a perfectly functioning machine can do to two-by-fours.

This made me think of all the dangerous things I’ve done, but moreover about all the intensely simple precautions you can to render them non-risky, and I think that’s extremely important to talk about. Tops of my list are the aforementioned industrial robot arm and high powered lasers.

Staying safe with an industrial robot arm is as easy as staying out of reach when it’s powered. Our procedure was to draw a line on the floor that traced the arm’s maximum radius, and you stay always outside that line when the light is on. It’s not foolproof, because you could hand the ’bot a golf club or something, but it’s a good minimum precaution. And when you need to get within the line, which you do, you power the thing down. There’s a good reason that many industrial robots live in cages with interlocks on the doors.

Laser safety is similar. You need to know where the beam is going, make sure it’s adequately terminated, and never take one in the eye. This can be as simple as putting the device in a box: laser stays in box, nobody goes blind. If you need to see inside, a webcam is marvelous. But sometimes you need to focus or align the laser, and then you put on the laser safety glasses and think really hard about where the beam is going. And then you close the box again when you’re done.

None of these safety measures are particularly challenging to implement, or conceptually hard: draw a line on the floor, put it in a box. There were a recent series of videos on making Lichtenberg figures safely, and as a general rule with high voltage projects, a great precaution is a two-button deadman’s switch box. This at least ensures that both of your hands are nowhere near the high voltage when it goes on, at the cost of two switches.

If all of the safety precautions are simple once you’ve heard them, they were nothing I would have come up with myself. I learned them all from other hackers. Same goes with the table saw in my workshop, or driving a car even. But since the more hackery endeavors are less common, the “common-sense” safety precautions in oddball fields are simply less commonly known. It’s our jobs as the folks who do know the secrets of safety to share them with others. When you do something dangerous, show off your safety hacks!

Patents And The Missing Museum

A beautiful chapter of the history of invention in the United States ended with a fire in 1880. Well, the fire took place in 1877, but the wheels of government turn slowly. For the first 90 years that patents were granted in the USA, applications were required to be accompanied by a working model – to prove that the idea works and rule out “the perpetual motion cranks”.

During this time, the US Patent Office put all of these models on display, or at least as many of them as they could. The idea was that, alongside the printed documents, people would learn from seeing the inventions in the flesh. This tremendous resource got the Patent Office nicknamed the “Temple of Invention”, and rightly so. Many of the crucial innovations of the industrial revolution were there, in miniature. From Samuel Morse’s model telegraph, through Eli Whitney’s cotton gin, to more than a thousand inventions of Thomas Edison’s, working models were to be seen in the flesh, if in the small. We can only imagine how awe-inspiring it would have been to walk through those halls.

Two fires put significant dents in this tremendous collection. First in 1836, in a fire that consumed most of the approximately 10,000 patents that had been issued to that date, models and paper copies alike. Ironically, these included the patent for the first cast-iron fire hydrant. This fire was so devastating that it led to a dramatic patent reform in that same year, and to the building of a new fireproof Patent Office.

And the “new” Patent Office building still stands today, and proudly displayed patent models until the fire that broke out inside the building in 1877. (The contents of the building weren’t fireproof.) In this second fire, brave employees saved many of the works by staying and battling the fire from inside, but the second demoralizing beatdown, and the accelerating number of patent applications, it became obvious that there just wasn’t enough space to store a model of each patentable invention, and the requirement was dropped in 1880.

A small portion of the remaining patent models were put on display in one wing of the National Portrait Gallery, housed in the Patent Office building, and I had the wonderful opportunity to see it live in the early 2000s. I have no idea if the exhibit is still there – I’m guessing it’s not. The Smithsonian owns the lion’s share of the existing models, and we imagine they are in a warehouse somewhere, like at the end of Raiders of the Lost Ark.

A shame, because seeing a real 3D model of a thing is different from seeing line drawings. Maybe in the future, 3D CAD drawings will take their place? They’d be a lot easier to save in event of a fire.

Fighting The Good Fight

We here at Hackaday are super-duper proponents of open source. Software, hardware, or firmware, we like to be able to see it, learn from it, modify it, and make it ourselves. Some of this is self-serving because when we can’t see how it was done, we can’t show you how it’s done. But it’s also from a deeper place than that: the belief that the world is made better by sharing and open access.

One of the pieces of open-source firmware that I have running on no fewer than three devices in my house right now is grbl – it’s a super-simple, super-reliable G-code interpreter and stepper motor controller that has stood the test of time. It’s also GPL3 licensed, which means that if you want to use the code in your project, and you modify it to match your particular machine, you have to make the modified version available for those who bought the machine to modify themselves.

So when Norbert Heinz noticed that the Ortur laser engravers were running grbl without making the code available, he wrote them a letter. They responded with “business secrets”, he informed them again of their responsibility, and they still didn’t comply. So he made a video explaining the situation.

Good news incoming! Norbert wrote in the comments that since the post hit Hackaday, they’ve taken notice over at Ortur and have gotten back in touch with him. Assuming that they’re on their way to doing the right thing, this could be a nice win for grbl and for Ortur users alike.

Inside the free software world, we all know that “free” has many meanings, but I’d bet that you don’t have to go far outside our community to find people who don’t know that “free” software can have tight usage restrictions on it. (Or maybe not – it all depends on the license that the software’s author chose.) Reading software licenses is lousy work better left for lawyers than hackers anyway, and I can no longer count how many times I’ve clicked on a EULA without combing through it.

So what Norbert did was a good deed – educating a company that used GPL software of their obligations. My gut says that Ortur had no idea what they needed to do to comply with the license, and Norbert told them, even if it required some public arm-twisting. But now, Ortur has the opportunity to make good, and hackers everywhere can customize the firmware that drives their laser engravers. Woot!

It’s probably too early to declare victory here, but consider following Norbert’s example yourself. While you can’t bring a lawsuit if you’re not the copyright owner, you can still defend your right to free software simply by explaining it politely to companies that might not know that they’re breaking the law. And when they come around, make sure you welcome them into the global open-source hive mind, because we all win. One of us!