Social Media Jacket Puts Your Likes On Your Sleeve

The great irony of the social media revolution is that it’s not very social at all. Users browse through people’s pictures in the middle of the night while laying in bed, and tap out their approval with all the emotion of clearing their spam folder. Many boast of hundreds or thousands of “friends”, but if push came to shove, they probably couldn’t remember when they had last seen even a fraction of those people in the real world. Assuming they’ve even met them before in the first place. It’s the dystopian future we were all warned about, albeit a lot more colorful than we expected.

But what if we took social media tropes like “Likes” and “Follows”, and applied them to the real world? That’s precisely what [Tuang] set out to do with the “Social Touch Suit”, a piece of wearable technology which requires a person actually make physical contact with the wearer to perform social engagements. There’s even a hefty dose of RGB LEDs to recreate the flashy and colorful experience of today’s social media services.

Every social action requires that a specific and deliberate physical interaction be performed, which have largely been designed to mimic normal human contact. A pat on the shoulder signifies you want to follow the wearer, and adding them as a friend is as easy as giving a firm handshake. These interactions bring more weight to the decisions users make. For example, if somebody wants to remove you as a friend, they’ll need to muster up the courage to look you in the eye while they hit the button on your chest.

The jacket uses an Arduino to handle the low level functions, and a Raspberry Pi to not only provide the slick visuals of the touch screen display, but record video from the front and rear integrated cameras. That way you’ve even got video of the person who liked or disliked you. As you might expect, there’s a considerable energy requirement for this much hardware, but with a 5200 mAh LiPo battery in the pocket [Tuang] says she’s able to get a run time of 3 to 4 hours.

Considering how much gadgetry is packed into it, the whole thing looks remarkably wearable. We wouldn’t say it’s a practical piece of outerwear when fully decked out, but most of the electronic components can be removed if you feel like going low-key. [Tuang] also points out that for a garment to be functional it really needs to be washable as well, so being able to easily strip off the sensitive components was always an important part of the design in her mind.

The technology to sensors wearable and flexible is still largely in its infancy, but we’ve very excited to see where it goes. If projects like these inspire you, be sure to check out the presentation [Kitty Yeung] gave at the Hackaday Supercon where she talks about her vision for bespoke wearable technology. Continue reading “Social Media Jacket Puts Your Likes On Your Sleeve”

Forbes Says The Raspberry Pi Is Big Business

Not that it’s something the average Hackaday reader is unaware of, but the Raspberry Pi is a rather popular device. While we don’t have hard numbers to back it up (extra credit for anyone who wishes to crunch the numbers), it certainly seems a day doesn’t go by that there isn’t a Raspberry Pi story on the front page. But given that a small, cheap, relatively powerful, Linux computer was something the hacking community had dreamed of for years, it’s hardly surprising.

But how popular is the Raspberry Pi among people who don’t necessarily spend their free time reading weird black-background websites? Well, according to a recent article in Forbes, the Pi has been spotted putting in an honest days work all over the world. From factories to garbage trucks, everyone’s favorite Linux computer has come a long a way from its humble beginnings. How does it feel knowing a $35 computer has a longer resume than you do?

Unfortunately, the Forbes article doesn’t have the sort of deep technical details we’re used to around these parts. The fact that the article opens by describing the Raspberry Pi as a “stripped-down circuit board covered with metal pins and squares” should tell you all you need to know about the overlap between Forbes and Hackaday readers, but we think author [Parmy Olson] still tells an story interesting regardless.

So where has the Pi been seen punching a clock? At Sony, for a start. The consumer electronics giant has been installing Pis in several of their factories to monitor various pieces of equipment. They record everything from temperature to vibration and send that to a centralized server using an in-house developed protocol. Some of the Pis are even equipped with cameras which feed into computer vision systems to keep an eye out for anything unusual.

[Parmy] also describes how the Raspberry Pi is being used in Africa to monitor the level of trash inside of garbage bins and automatically dispatch a truck to come pick it up for collection. In Europe, they’re being used to monitor the health of fueling stations for hydrogen powered vehicles. All over the world, businesses are realizing they can build their own monitoring systems for as little as 1/10th the cost of turn-key systems; with managers occasionally paying for the diminutive Linux computers out of their own pocket.

The impact the Pi has had on the hardware world is difficult to overstate. It’s redefined the status quo for single board computers, and with the platform continuing to evolve, there’s no sign its incredible journey is slowing down anytime soon.

[Thanks to Itay for the tip.]

Alma The Talking Dog Might Win Some Bar Bets

Students at the University of Illinois at Urbana-Champaign have a brain-computer interface that can measure brainwaves. What did they do with it? They gave it to Alma, a golden labrador, as you can see in the video below. The code and enough info to duplicate the electronics are on GitHub.

Of course, the dog doesn’t directly generate speech. Instead, the circuit watches her brainwaves via an Arduino and feeds the raw data to a Raspberry Pi. A machine learning algorithm determines Alma’s brainwave state and plays prerecorded audio expressing Alma’s thoughts.

Continue reading “Alma The Talking Dog Might Win Some Bar Bets”

RetroPie NES Clock Tells You When It’s Game Time

We’ve all seen the 3D printed replicas of classic game consoles which house a Raspberry Pi; in fact, there’s a pretty good chance some of the people reading this post have one of their own. They’re a great way to add some classic gaming emulation to your entertainment center, especially compared to the bare PCB chic of just having a Pi hanging off your TV’s HDMI port.

[Victor Heid] loved the look of these miniature consoles, but wanted to challenge himself to design something that was also multi-functional and unique. So he decided to create an NES-inspired case for the Raspberry Pi 3 A+ that doubles as a LED matrix clock with a decidedly retro feel. Frankly, even if it was just a clock we would have been impressed with the final product; but the fact that it’s also a fully functional RetroPie build really goes above and beyond.

It should be obvious just looking at the completed product that [Victor] put a lot of effort into sanding and finishing the 3D printed case. But we don’t have to imagine the process, since he was kind enough to thoroughly detail the steps and materials he used. As you might have guessed, the short version is a lot of filler and a lot of time; but it’s worth looking at the complete write-up if you’ve ever considered trying to make your own printed parts look less…printed. His method of applying the lettering on the front of case using a laser printer, some Mod Podge, and a healthy dose of patience is also something you might want to file away for a future project.

The electronics for this project are exceptionally simple, as [Victor] used the Pimoroni Scroll pHAT HD rather than trying to roll his own LED matrix in such a limited space. So it was just a matter of connecting up the wires to the Pi’s GPIO header and getting the various bits of software talking to each other, which he also details for anyone who might be interested.

It’s been a few months since the Raspberry Pi 3 A+ was unveiled, and we’re finally starting to see projects that make use of the new board’s reduced footprint. The ability of hardware like the A+, combined with the lackluster attempts by manufactures to produce official “mini” systems, seems to have set the stage for hackers to once again outshine commercial offerings. Not that we’re complaining, of course.

The Raspberry Pi Cluster From Outer Space

We see a lot of weird and esoteric stuff here at Hackaday, but even by our standards, Bell Lab’s Plan 9 operating system is an oddball. Named after the science fiction film Plan 9 from Outer Space, it was designed to extend the UNIX “everything is a file” mentality to the network. It envisioned a future where utilizing the resources of another computer would be as easy as copying a file. But as desktop computers got more powerful the idea seemed less appealing, and ultimately traditional operating systems won out. Of course, that doesn’t mean you still can’t play around with it.

Logically to make use of a distributed operating system you really need something to distribute it on, but as [Andrew Back] shows, today that’s not nearly the challenge it would have been back then. Using the Raspberry Pi, he builds a four-node Plan 9 cluster that’s not only an excellent way to explore this experimental operating system, but looks cool sitting on your desk. Even if you’re not interested in drinking the Bell Lab’s Kool-Aid circa 1992, his slick desktop cluster design would work just as well for getting your feet wet with modern-day distributed software stacks.

The enclosure for the cluster is built from laser cut acrylic panels which are then folded into shape with a hot wire bending machine. That might seem like a tall order for the home hacker, but we’ve covered DIY acrylic benders in the past, and the process is surprisingly simple. Granted you’ll still need to get access to a beefy laser cutter, but that’s not too hard anymore if you’ve got a hackerspace nearby.

[Andrew] uses short extension cables and female panel mount connectors to keep everything tidy, and with the addition of some internal LED lighting the final product really does look like a desktop computer from a far more fashionable future. Combined with the minimalist keyboard, the whole setup wouldn’t look out of place on the set of a science fiction movie. Perhaps that’s fitting, giving Bell Lab’s futuristic goals for Plan 9.

Its been the better part of a decade since we first brought you word that Plan 9 was available for the Raspberry Pi, and yet in all that time we’ve never really seen it put to use. Hopefully builds like this will inspire others to play around with this fascinating piece of computing history.

[Thanks to Dave for the tip.]

This Raspberry Pi Is NASty

A piratebox is a small computer, WiFi adapter, and a hard drive. The idea behind the piratebox is to simply put some storage on a network, accessible to all. It’s great if you’re in a group, need an easy way to share files at the hackerspace, or just want to put a modern twist on a LAN party. [Nick] and [Josiah] came up with their own twist on a piratebox, and this one uses a Raspberry Pi Zero W, making it one of the cheapest pirateboxes around.

The Raspberry Pi Zero W, with its network adapter, has all the hardware required to turn into a capable piratebox, so the hardware for this build is pretty simple. It’s just a USB A plug in the form of a USB Stem and nothing else. The software is available on GitHub and broadcasts a WiFi network named SUBZero. Browsing to 192.168.1.1 on this network allows for uploading and downloading files, all without an Internet connection. It’s a cloud that will fit in your pocket, which we’re calling a ‘fog’ or a ‘mist’ this week. Since this is called the ‘SUBZero’, perhaps ‘pogonip’ is the preferred nomenclature.

Of course no Raspberry Pi project is complete without a 3D printed case, and the SUBZero is no exception. There’s a 3D printed case for this Pi Zero, complete with a sliding door for access to all the ports. You can see a video of that below.

Continue reading “This Raspberry Pi Is NASty”

Raspberry Pi Camera With Smarts — Cloud Or Local?

[Mark West] gave an interesting presentation at last year’s GOTO Copenhagen conference. He shows how he took a simple Raspberry Pi Zero webcam and expanded it with AI. He actually added the intelligent features in two different ways: on in the Amazon cloud and another using the Intel Modvidius NCS USB stick directly connected to the USB. You can see the video below.

Local motion detection uses some open source software. You simply configure it using a text file and it even handles the video streaming. However, at that point, you just have a web camera — not amazing, nor very cost effective. However, you get a lot of false alarms with the motion detection software. A random cat walking past, clouds, trees, or even rain would push [Mark] an email and after 250 alert e-mails a day, [Mark] decided to make something better.

Continue reading “Raspberry Pi Camera With Smarts — Cloud Or Local?”