Variable Stiffness Joints For Robots And More

The human body has many miraculous capabilities that we often take for granted. One of the more subtle ones is the variable stiffness of your joints. In technical terms, stiffness refers to the ability to resist a load. Delicately manipulating an artist’s paint brush, for example, doesn’t require much load resistance, but does require fine control. However, that same artist might pick up a bowling ball with a stiffer joint (and, usually, less fine control).

[Christopher Churchill] and some colleagues have a novel mechanical device that can rapidly change stiffness. The device could have applications in robotics and other devices. It can also transmit or attenuate vibration since non-stiff joints don’t pass vibrations as easily as stiff ones.

Continue reading “Variable Stiffness Joints For Robots And More”

Plastic Battlebots Might Bite Your Hand Off

The folks at Fetch Robotics do love a good game of combat robots. Time is tight these days, however, so putting together a good ol’ 220-pounder for Robogames is a dream few of us can realize. Instead, the Fetch team hosted their own Plastic fantastic battlebots competition to blow off some steam, and the results are in!

Battlebots enter the ring built from a frame of entirely plastic parts and weighing a humble 3lbs. Just like Battlebots and Robogames, they’ll follow a 2-minute episode of hack-and-slash after which judges determine the winner. Bots were forged from everything you might see in arms reach of your local hackerspace: pvc pipe, acrylic sheets, and a few 3D-printed components. On the menu of shredded plastic we have everything from classic wedges and spinners to a giant spinning rubber pterodactyl strapped onto the body of an RC car. (Time is tight, right?)

While 3 pound plastic fighters might not seem devastating, don’t underestimate the LiPo batteries and brushless motors that are running under the hood. These competitors can easily heave each other across the ring. We’ve definitely seen mini Battlebot tournaments before, and we’re thrilled to see them on the rise in everyday places. Better start getting your materials ready. Who knows? Mini Battlebots might be coming to an alley near you too.

Continue reading “Plastic Battlebots Might Bite Your Hand Off”

The Challenges Of A Laundry Folding Robot

rosie“This is the year of the general purpose home robot!” “2016 is going to be for robots like 1976 was for the home computer!” The problem with statements like those is the fact that we’ve been hearing them since the 1970’s. General purpose home robots still have a long way to go. Sure, we’ve got Roomba, we’ve even got self-driving cars. But we don’t have Rosie from the Jetsons. And while I don’t think we’re going to get to Rosie for a while, there are some simple challenges that can spur development in that direction. One need look no further than one’s own laundry room.

maytagUsing machines to wash and dry laundry isn’t a new concept. Washers and dryers have become commonplace enough that we don’t think of them as robots. Hamilton Smith patented the rotary washing machine in 1858. Maytag has had home machines available for nearly 100 years. Many of the early machines were powered by gasoline engines, as electricity wasn’t common in rural farmhouses. Things have improved quite a bit since then! From the dryer we transfer our laundry to a basket, where it has to be folded. It is this final step that cries out for a homemaking automaton to take this chore out of Everyman’s hands.

As one can imagine, folding laundry is one of those tasks that is easy for humans, but hard for robots. However, it’s not impossible. The idea of this article is to show what has been done, and get people talking. A project like this would take a person or group of people with skills in mechanics, electronics, machine vision, and software. It would also be sure to place well in the 2016 Hackaday Prize.

Continue reading “The Challenges Of A Laundry Folding Robot”

The Ultimate 1:1 BB-8 Build Guide

BB-8 is not only a cute little droid but also presents dandy of a challenge for hackers ’round the globe to try and recreate in the garage. Nonfunctional models are a dime a dozen and the novelty has long worn off the Sphero toy. This brings us to a legit full-scale BB-8, seen in action in the video after the break.

Lucky for us, [Ed Zarick] has written up a blog post that’s as impressive as the build itself. [Ed] has drawn some inspiration and shared knowledge from several online groups focused around recreating the BB-8. He also provides some thorough Solidworks assemblies that look painfully detailed.

Continue reading “The Ultimate 1:1 BB-8 Build Guide”

Shoot Darts At The Shins Of Total Strangers

[Michael Brumlow] found us and sent us a link. Within a few seconds, we were driving a webcam-enabled Nerf dart tank through his office and trying not to hit walls or get stepped on by his co-workers. Unfortunately, it was out of darts at the time, but you can find them all over the floor if you scout around.

screenshot_remote_botAll of the code details, including the link where you can test drive it yourself, are up on [Michael]’s GitHub. The brains are an Intel Edison board, and the brawns are supplied by an Arduino motor controller shield and (for the latest version) a chassis bought from China.

It runs fairly smoothly, considering the long round trip from [Michael]’s office in Texas, through wherever Amazon keeps their Web Services, over to us in Germany and back. Once we got used to the slight lag, and started using the keyboard’s arrow keys for control, we were driving around like a pro.

It’s got a few glitches still, like the camera periodically overheating and running out of WiFi distance. [Michael] said he’d try to keep it charged up and running while you give it a shot. The controls are multiplexed in the cloud, so your chance of steering it is as good as anyone else’s. It’ll be interesting to see what happens when thousands of Hackaday readers try to control it at once!

It takes a certain kind of bravery to put your telepresence robot up on the open Internets. So kudos to you, [Michael], and we hope that you manage to get some work done this week, even though you will have all of Hackaday driving into your cubicle walls.

Cute, Hackable, 3D Printable Robot Family

We first saw the robot Zowi (top row in the banner photo) at Make Munich a few weeks ago, and we were very impressed by how much interesting motion they were getting out of the ‘bot for only using four servo motors. The combination of big feet, strong ankle joints, and clever programming let the cute little bot stand on one leg, do a moonwalk, and even hop. (See the video, below the break.) We knew it was for sale. What we didn’t know is that it was entirely open source.

[Javier Isabel], the inventor, is very good at giving credit where it’s due, and that’s a great thing because his ‘bot is basically an improved BOB robot. That said, you really need to see this thing moving to know what a difference Zowi’s significantly stronger servos and clever programming can make.

But that’s not all! Since everything about Zowi is open, and up on GitHub you can not only 3D print one of your own, but you can easily modify the attractively-boxy case. And a handful of people have taken [Javier] up on the offer, and submitted their modifications back as pull requests. So if you’d rather something mildly more humanoid, and are willing to add a couple more servos, there’s a good basis for your explorations ready to go.

We really like the idea of collaborative toy-robot design, and from what we’ve seen the basic Zowi platform is a winner. Check it out and see if you’re not inspired to add your own personal touch to the design. If you do, be sure to contribute back for others to see!

Thanks [Nils Hitze] for the tip!

Continue reading “Cute, Hackable, 3D Printable Robot Family”

MDF Omniwheel Uses No Metal Or Plastic

What’s better than a caster? An omniwheel. These wheels are like a big wheel with little wheels at different angles that can roll in any direction. [Sonodera] built an omniwheel out of laser cut MDF. MDF–or Medium Density Fiberboard–makes up all the parts of the wheel. There’s no plastic or metal at all.

[Sonodera’s] wheel is more of a passive design like a caster. It would be possible to drive the wheel through the center in two directions, but the right-angle rollers are passive.

We’ve seen several robots with omniwheels before. In fact, this tripod-inspired robot also has passive rollers and the three-legged design takes advantage of them (the so-called Kiwi drive). Some schemes combine multi-directional wheels with conventional wheels (usually the standard wheels are in the center). There are other multi-directional wheel designs out there, including the Mecanum wheel. You can see a video of the MDF wheel in action, below.