Quasi-Quantifying Qubits For 100 Quid

As part of his multi-year project to build a quantum computer, hacakday.io poster [skywo1f] has shared with us his most recent accomplishment — a Nuclear Magnetic Resonance Spectrometer, which he built for less than $100.

The NMR spectrometer is designed to disturb protons, which naturally line up according to the Earth’s magnetic field, using an electric coil. Once disturbed, the protons nutate (a fancy physics word for wobble), and flip quantum spin states. [skywo1f]’s NMR device can detect these spin state changes, as he demonstrates with a series of control experiments designed to eliminate sources of false positives (which can be annoyingly prevalent in experimental physics). His newest experimental device includes a number of improvements over previous iterations, including proper shielding, quieter power topology, and better coil winding in the core of the device. Everything was assembled with cost in mind, while remaining sensitive enough to conduct experiments — the whole thing is even driven by a Raspberry Pi Pico.

Here at Hackaday, we love to see experiments that should be happening in million-dollar laboratories chugging along on kitchen tables, like this magnetohydrodynamic drive system or some good old-fashioned PCB etching. [skywo1f] doesn’t seem to be running any quantum calculations yet, but the NMR device is an important building block in one flavor of quantum computer, so we’re excited to see where he takes his work next.

Citizen Science Is All Fun And Games

You are probably familiar with initiatives like Seti@Home, where you donate unused computer power to some science project that needs computer cycles. [Jeff Yoshimi] wants to borrow your most powerful computer: your brain. The reason: cancer research.

[Jeff’s] recent book, Gaming Cancer, has three examples: Eterna, Foldit, and Nanocrafter. All three make games out of creating biological molecules. With Foldit, you create proteins in a bonsai-like fashion. EteRNA is more like Sudoku for RNA. Nanocrafter used DNA strands as puzzle pieces, although it is no longer operational. Their website, amusingly, looks like it was taken over by a slot machine site and a probably AI-generated text tries to convince you that slot machines are much like fusing DNA strands.

What can these projects do? Eterna’s open vaccine challenge used gameplay to help design RNA molecules for vaccines that don’t require ultra-cold storage, and the results drove improvements in real-life vaccines.

There have been several science fiction stories that center on the idea that a game of some sort might be an entrance test to a super-secret organization (The Last Starfighter or Stargate: Universe, for example). Maybe a future science game will trigger scholarship or job offers. It could happen.

We like citizen science. Zooniverse does a good job of making it fun, but maybe not to the level of a game. You can make contributions in space, or even right here on Earth.

DIY X-Rays Made Easy

Who doesn’t want an X-ray machine? But you need a special tube and super high voltage, right? [Project 326] says no, and produces a USB-powered device that uses a tube you can pick up two for a dollar. You might guess the machine doesn’t generate X-rays with a lot of energy, and you’d be right. But you can make up for it with long exposure times. Check out the video below, with host [Posh Arthur].

The video admits there are limitations, of course. We were somewhat sad that [Project 326] elected not to share the exact parts list and 3D printed files because in the unlikely event someone managed to hurt themselves with it, there could be a hysterical reaction. We agreed, though, that if you are smart enough to handle this, you’ll be smart enough to figure out how to duplicate it — it doesn’t look that hard, and there are plenty of not-so-subtle clues in the video.

Continue reading “DIY X-Rays Made Easy”

No Tension For Tensors?

We always enjoy [FloatHeadPhysics] explaining any math or physics topic. We don’t know if he’s acting or not, but he seems genuinely excited about every topic he covers, and it is infectious. He also has entertaining imaginary conversations with people like Feynman and Einstein. His recent video on tensors begins by showing the vector form of Ohm’s law, making it even more interesting. Check out the video below.

If you ever thought you could use fewer numbers for many tensor calculations, [FloatHeadPhysics] had the same idea. Luckily, imaginary Feynman explains why this isn’t right, and the answer shows the basic nature of why people use tensors.

Continue reading “No Tension For Tensors?”

Dithering With Quantization To Smooth Things Over

It should probably come as no surprise to anyone that the images which we look at every day – whether printed or on a display – are simply illusions. That cat picture isn’t actually a cat, but rather a collection of dots that when looked at from far enough away tricks our brain into thinking that we are indeed looking at a two-dimensional cat and happily fills in the blanks. These dots can use the full CMYK color model for prints, RGB(A) for digital images or a limited color space including greyscale.

Perhaps more interesting is the use of dithering to further trick the mind into seeing things that aren’t truly there by adding noise. Simply put, dithering is the process of adding noise to reduce quantization error, which in images shows up as artefacts like color banding. Within the field of digital audio dithering is also used, for similar reasons. Part of the process of going from an analog signal to a digital one involves throwing away data that falls outside the sampling rate and quantization depth.

By adding dithering noise these quantization errors are smoothed out, with the final effect depending on the dithering algorithm used.

Continue reading “Dithering With Quantization To Smooth Things Over”

Better Solid State Heat Pumps Through Science

If you need to cool something, the gold standard is using a gas compressor arrangement. Of course, there are definite downsides to that, like weight, power consumption, and vibrations. There are solid-state heat pumps — the kind you see in portable coolers, for example. But, they are not terribly efficient and have limited performance.

However, researchers at Johns Hopkins, working with Samsung, have developed a new thin-film thermoelectric heat pump, which they claim is easy to fabricate, scalable, and significantly more efficient. You can see a video about the new research below.

Manufacturing requires similar processes to solar cells, and the technology can make tiny heat pumps or — in theory — coolers that could provide air conditioning for large buildings. You can read the full paper in Nature.

CHESS stands for Controlled Hierarchically Engineered Superlattice Structures. These are nano-engineered thin-film superlattices (around 25 μm thick). The design optimizes their performance in this application.

The new devices claim to be 100% more efficient at room temperature than traditional devices. In practical devices, thermoelectric devices and the systems using them have improved by around 70% to 75%. The material can also harvest power from heat differences, such as body heat. The potential small size of devices made with this technology would make them practical for wearables.

We’ve looked at the traditional modules many times. They sometimes show up in cloud chambers.

Continue reading “Better Solid State Heat Pumps Through Science”

Could Space Radiation Mutate Seeds For The Benefit Of Humanity?

Humans have forever been using all manner of techniques to better secure the food we need to sustain our lives. The practice of agriculture is intimately tied to the development of society, while techniques like selective breeding and animal husbandry have seen our plants and livestock deliver greater and more nourishing bounty as the millennia have gone by. More recently, more direct tools of genetic engineering have risen to prominence, further allowing us to tinker with our crops to make them do more of what we want.

Recently, however, scientists have been pursuing a bold new technique. Researchers have explored using radiation from space to potentially create greater crops to feed more of us than ever.

Continue reading “Could Space Radiation Mutate Seeds For The Benefit Of Humanity?”