Photographing Cosmic Rays With A Consumer Camera

The reason photographic darkrooms are needed is because almost any amount of light can ruin the film or the photographic paper before they are fixed. Until then these things are generally kept in sealed, light-proof containers until they are ready to be developed. But there are a few things that can ruin film even then, most notably because some types of film are sensitive to ionizing radiation as well as light. This was famously how [Henri Becquerel] discovered that uranium is radioactive, but the same effect can be used to take pictures of cosmic rays.

In [Becquerel]’s case, a plate of photographic material was essentially contaminated from uranium by accident, even though the plate was in a completely dark area otherwise. Cosmic rays are similar to this type of radiation in that they are also ionizing and will penetrate various materials even in places we might otherwise think of as dark. For this artistic and scientific experiment, [Gabriel] set up a medium-format digital camera in a completely dark room and set it to take a 41-minute exposure. The results are fairly impressive and are similar to [Becquerel]’s experiment except that [Gabriel] expected to see something whereas the elder scientist was more surprised.

Like cosmic rays or radiation from uranium, there is a lot flying around that is invisible to the human eye but that can be seen with the right equipment and some effort. Although [Gabriel] is using a camera with a fairly large sensor that we might not all have access to, in theory this could work with more off-the-shelf digital photography equipment or even film cameras. A while ago we even saw a build that used UV to see other invisible phenomena like electrical arcing.

What To Do When Your Foucault Pendulum Stops Swinging

At the Houston Museum of Natural Science they recently made a disturbing discovery: their Foucault pendulum had stopped swinging for the first time since its installation in the 1970s. (Video, embedded below.)

While some might take this as yet another sign of the end times, here it is simply a sign that the electromagnetic system that kicks the pendulum developed a fault and will need to be fixed.

Their explainer video of this Herzstein Foucault pendulum is also worth watching, as it explains both the underlying physics and this particular pendulum’s construction. Every 48 hours the 81.6 kg heavy pendulum completes a full rotation, like clockwork, with pins along the circumference being tipped over one by one as the pendulum precesses.

Continue reading “What To Do When Your Foucault Pendulum Stops Swinging”

A red and blue visualization of the waves from a small ultrasonic speaker

Seeing Sound For Under $200

There are five general senses: touch for feels, taste for food, smell for avoiding trash, hearing for sounds, and, of course, eyesight for visualizing the very waves making up that sound. [PlasmatronX] drives that last point home with his camera for sound waves, that’s even able to capture constructive and destructive interference. (Video, embedded below.)

You may have heard of Schlieren imaging, which is usually used to capture the movement of air currents caused by heat sources. [PlasmatronX] sets up a concave mirror to amplify the refraction of different densities of air, only unlike traditional Schlieren setups, he’s after the different densities of air caused by the pressure waves that we interpret as sound.

Continue reading “Seeing Sound For Under $200”

Simulating Driven-Dissipative Quantum Spin Dynamics On Consumer Hardware

Physics simulations using classical mechanics is something that’s fairly easily done on regular consumer hardware, with real-time approximations a common feature in video games. Moving things to the quantum realm gets more complex, though with equilibrium many-body systems still quite solvable. Where things get interesting is with nonequilibrium quantum systems.

These open systems are subject to energy gains and losses that disrupt its equilibrium. The truncated Wigner approximation (TWA) is used as a semi-classical method to solve these, but dissipative spin systems proved tricky. Now however [Hosseinabadi] et al. have put forward a TWA framework (PR article) for driven-dissipative many-body dynamics that works on consumer hardware.

Naturally, even with such optimizations there is still the issue that the TWA is only an approximation. This raises questions such as about how many interactions are required to get a sufficient level of accuracy.

Using classical computers to do these kind of quantum physics simulations has often been claimed to the ideal use of qubit-based quantum computers, but as has been proven repeatedly, you can get by with a regular tensor network or even a Commodore 64 if you’re in a pinch.

Treating Functions As Vectors In Hilbert Space

Perhaps the most beautiful aspect of mathematics is that it applies to literally everything, even things that do not exist in this Universe. In addition to this there are a number of alternative ways to represent reality, with Fourier space and its related transforms being one of the most well-known examples. An alternative to Euclidian vector space is called Hilbert space, as a real or complex inner product space, which is used in e.g. mathematical proofs. In relation to this, [Eli Bendersky] came up with the idea of treating programming language functions as vectors of a sort, so that linear algebra methods can be applied to them.

Of course, to get really nitpicky, by the time you take a function with its arguments and produce an output, it is no longer a vector, but a scalar of some description. Using real numbers as indices also somewhat defeats the whole point and claim of working in a vector space, never mind Hilbert space.

As with anything that touches upon mathematics there are sure to be many highly divisive views, so we’ll leave it at this and allow our esteemed readers to flex their intellectual muscles on this topic. Do you think that the claims made hold water? Does applying linear algebra to every day functions make sense in this manner, perhaps even hold some kind of benefit?

Roll Your Own Hall Effect Sensor

If you read about Hall effect sensors — the usual way to detect and measure magnetic fields these days — it sounds deceptively simple. There’s a metal plate with current flowing across it in one direction, and sensors at right angles to the current flow. Can it really be that simple? According to a recent article in Elektor, [Burkhard Kainka] says yes.

The circuit uses a dual op amp with very high gain, which is necessary because the Hall voltage with 1 A through a 35 micron copper layer (the thickness on 1 oz copper boards) is on the order of 1.5 microvolts per Tesla. Of course, when dealing with tiny voltages like that, noise can be a problem, and you’ll need to zero the amplifier circuit before each use.

The metal surface? A piece of blank PCB. Copper isn’t the best material for a Hall sensor, but it is readily available, and it does work. Of course, moving the magnet can cause changes, and the whole thing is temperature sensitive. You wouldn’t want to use this setup for a precision measurement. But for an experimental look at the Hall effect, it is a great project.

Today, these sensors usually come in a package. If you want to know more about the Hall effect, including who Edwin Hall was, we can help with that, too.

The Music Of The Sea

For how crucial whales have been for humanity, from their harvest for meat and oil to their future use of saving the world from a space probe, humans knew very little about them until surprisingly recently. Most people, even in Herman Melville’s time, considered whales to be fish, and it wasn’t until humans went looking for submarines in the mid-1900s that we started to understand the complexities of their songs. And you don’t have to be a submarine pilot to listen now, either; all you need is something like these homemade hydraphones.

Continue reading “The Music Of The Sea”