Thomas Edison May Have Discovered Graphene

Thomas Edison is well known for his inventions (even if you don’t agree he invented all of them). However, he also occasionally invented things he didn’t understand, so they had to be reinvented again later. The latest example comes from researchers at Rice University. While building a replica light bulb, they found that Thomas Edison may have accidentally created graphene while testing the original article.

Today, we know that applying a voltage to a carbon-based resistor and heating it up to over 2,000 °C can create turbostratic graphene. Edison used a carbon-based filament and could heat it to over 2,000 °C.

This reminds us of how, in the 1880s, Edison observed current flowing in one direction through a test light bulb that included a plate. However, he thought it was just a curiosity. It would be up to Fleming, in 1904, to figure it out and understand what could be done with it.

Naturally, Edison wouldn’t have known to look for graphene, how to look for it, or what to do with it if he found it. But it does boggle the mind to think about graphene appearing many decades earlier. Or maybe it would still be looking for a killer use. Certainly, as the Rice researchers note, this is one of the easier ways to make graphene.

Building Natural Seawalls To Fight Off The Rising Tide

These days, the conversation around climate change so often focuses on matters of soaring temperatures and extreme weather events. While they no longer dominate the discourse, rising sea levels will nonetheless still be a major issue to face as global average temperatures continue to rise.

This poses unique challenges in coastal areas. Municipalities must figure out how to defend their shorelines, or decide which areas they’re willing to lose. The City of Palo Alto is facing just this challenge, and is building a natural kind of seawall to keep the rising tides at bay.

Continue reading “Building Natural Seawalls To Fight Off The Rising Tide”

Rare-Earth-Free Magnets With High Entropy Borides

Map of the calculated magnetic anisotropy. (Credit: Beeson et al., Adv. Mat., 2025)
Map of the calculated magnetic anisotropy. (Credit: Beeson et al., Adv. Mat., 2025)

Although most of us simultaneously accept the premise that magnets are quite literally everywhere and that few people know how they work, a major problem with magnets today is that they tend to rely on so-called rare-earth elements.

Although firmly in the top 5 of misnomers, these abundant elements are hard to mine and isolate, which means that finding alternatives to their use is much desired. Fortunately the field of high entropy alloys (HEAs) offers hope here, with [Beeson] and colleagues recently demonstrating a rare-earth-free material that could be used for magnets.

Although many materials can be magnetic, to make a good magnet you need the material in question to be both magnetically anisotropic and posses a clear easy axis. This basically means a material that has strong preferential magnetic directions, with the easy axis being the orientation which is the most energetically favorable.

Through experimental validation with magnetic coercion it was determined that of the tested boride films, the (FeCoNiMn)2B variant with a specific deposition order showed the strongest anisotropy. What is interesting in this study is how much the way that the elements are added and in which way determines the final properties of the boride, which is one of the reasons why HEAs are such a hot topic of research currently.

Of course, this is just an early proof-of-concept, but it shows the promise of HEAs when it comes to replacing other types of anisotropic materials, in particular where – as noted in the paper – normally rare-earths are added to gain the properties that these researchers achieved without these elements being required.

Did We Overestimate The Potential Harm From Microplastics?

Over the past years there have appeared in the media increasingly more alarming reports about micro- and nanoplastics (MNPs) and the harm that they are causing not only in the environment, but also inside our bodies. If some of the published studies were to be believed, then MNPs are everywhere inside our bodies, from our blood and reproductive organs to having deeply embedded themselves inside our brains with potentially catastrophic health implications.

Early last year we covered what we thought we knew about the harm from MNPs in our bodies, but since then more and more scientists have pushed back against these studies, calling them ‘flawed’ and questioning the used methodology and conclusions. Despite claims of health damage in mice, institutions like the German federal risk assessment institute also do not acknowledge evidence of harm to human health from MNPs.

All of which raises the question whether flawed studies have pushed us into our own Chicken Little moment, and whether it’s now time to breathe a sigh of relief that the sky isn’t falling after all.

Continue reading “Did We Overestimate The Potential Harm From Microplastics?”

The Amazing Maser

While it has become a word, laser used to be an acronym: “light amplification by stimulated emission of radiation”. But there is an even older technology called a maser, which is the same acronym but with light switched out for microwaves. If you’ve never heard of masers, you might be tempted to dismiss them as early proto-lasers that are obsolete. But you’d be wrong! Masers keep showing up in places you’d never expect: radio telescopes, atomic clocks, deep-space tracking, and even some bleeding-edge quantum experiments. And depending on how a few materials and microwave engineering problems shake out, masers might be headed for a second golden age.

Simplistically, the maser is — in one sense — a “lower frequency laser.” Just like a laser, stimulated emission is what makes it work. You prepare a bunch of atoms or molecules in an excited energy state (a population inversion), and then a passing photon of the right frequency triggers them to drop to a lower state while emitting a second photon that matches the first with the same frequency, phase, and direction. Do that in a resonant cavity and you’ve got gain, coherence, and a remarkably clean signal.

Continue reading “The Amazing Maser”

Two very similar diffraction patterns are shown, in patterns of green dots against a blue background. The left image is labelled "Kompressions-algorithmus", and the one on the right is labelled "Licht & Zweibelzellen".

Why Diffraction Gratings Create Fourier Transforms

When last we saw [xoreaxeax], he had built a lens-less optical microscope that deduced the structure of a sample by recording the diffraction patterns formed by shining a laser beam through it. At the time, he noted that the diffraction pattern was a frequency decomposition of the specimen’s features – in other terms, a Fourier transform. Now, he’s back with an explanation of why this is, deriving equations for the Fourier transform from the first principles of diffraction (German video, but with auto-translated English subtitles. Beware: what should be “Huygens principle” is variously translated as “squirrel principle,” “principle of hearing,” and “principle of the horn”).

The first assumption was that light is a wave that can be adequately represented by a sinusoidal function. For the sake of simplicity (you’ll have to take our word for this), the formula for a sine wave was converted to a complex number in exponential form. According to the Huygens principle, when light emerges from a point in the sample, it spreads out in spherical waves, and the wave at a given point can therefore be calculated simply as a function of distance. The principle of superposition means that whenever two waves pass through the same point, the amplitude at that point is the sum of the two. Extending this summation to all the various light sources emerging from the sample resulted in an infinite integral, which simplified to a particular form of the Fourier transform.

One surprising consequence of the relation is the JPEG representation of a micrograph of some onion cells. JPEG compression calculates the Fourier transform of an image and stores it as a series of sine-wave striped patterns. If one arranges tiles of these striped patterns according to stripe frequency and orientation, then shades each tile according to that pattern’s contribution to the final image, one gets a speckle pattern with a bright point in the center. This closely resembles the diffraction pattern created by shining a laser through those onion cells.

For the original experiment that generated these patterns, check out [xoreaxeax]’s original ptychographical microscope. Going in the opposite direction, researchers have also used physical structures to calculate Fourier transforms.

Continue reading “Why Diffraction Gratings Create Fourier Transforms”

Astronomy Live On Twitch

Although there are a few hobbies that have low-cost entry points, amateur astronomy is not generally among them. A tabletop Dobsonian might cost a few hundred dollars, and that is just the entry point for an ever-increasing set of telescopes, mounts, trackers, lasers, and other pieces of equipment that it’s possible to build or buy. [Thomas] is deep into astronomy now, has a high-quality, remotely controllable telescope, and wanted to make it more accessible to his friends and others, so he built a system that lets the telescope stream on Twitch and lets his Twitch viewers control what it’s looking at.

The project began with overcoming the $4000 telescope’s practical limitations, most notably an annoyingly short Wi-Fi range and closed software. [Thomas] built a wireless bridge with a Raspberry Pi to extend connectivity, and then built a headless streaming system using OBS Studio inside a Proxmox container. This was a major hurdle as OBS doesn’t have particularly good support for headless operation.

Continue reading “Astronomy Live On Twitch”