It turns out, that mold is everywhere. The problem is when it becomes too much, as mold infestations can have serious health effects on both humans and animals. Remediation is extremely expensive, too. So there are plenty of benefits to finding mold early. Now, German researchers are proposing an electronic “nose” that uses UV-activated tin oxide nanowires that change resistance in the presence of certain chemicals, and they say it can detect two common indoor mold species.
The nanowire sensors can detect Staachybotrys chartarum and Chaetominumglobosum. The real work, though, is in the math used to determine positive versus negative results.
We suspect there are three kinds of people in the world. People who have access to a Michelson Interferometer and are glad, those who don’t have one and don’t know what one is, and a very small number of people who want one but don’t have one. But since [Longest Path Search] built one using 3D printing, maybe the third group will dwindle down to nothing.
If you are in the second camp, a Michelson interferometer is a device for measuring very small changes in the length of optical paths (oversimplifying, a distance). It does this by splitting a laser into two parts. One part reflects off a mirror at a fixed distance from the splitter. The other reflects off another, often movable, mirror. The beam splitter also recombines the two beams when they reflect back, producing an interference pattern that varies with differences in the path length between the splitter and the mirror. For example, if the air between the splitter and one mirror changes temperature, the change in the refraction index will cause a minute difference in the beam, which will show up using this instrument.
The device has been used to detect gravitational waves, study the sun and the upper atmosphere, and also helped disprove the theory that light is transmitted through a medium known as luminiferous aether.
Although the humble propeller and its derivatives still form the primary propulsion method for ships, this doesn’t mean that alternative methods haven’t been tried. One of the more fascinating ones is the magnetohydrodynamic drive (MHDD), which uses the Lorentz force to propel a watercraft through the water. The somewhat conductive seawater is thus the working medium, with no moving parts required.
The end of the MHD thruster from the Yamato-1.
Although simple in nature, only the Japanese Yamato-1 full-scale prototype ever carried humans in 1992. As covered in a recent video by [Sails and Salvos], the prototype spent most of its time languishing at the Kobe Maritime Museum, until it was scrapped in 2016.
There are two types of MHDD, based around either conduction – involving electrodes – or induction, which uses a magnetic field. The thrusters used by the Yamato-1 used the latter type of MHDD, involving liquid helium-cooled, super-conducting coils. The seawater with its ions from the dissolved salts responds to this field by accelerating according to the well-known right-hand rule, thus providing thrust.
The main flaw with an MHDD as used by the Yamato-1 is that it’s not very efficient, with a working efficiency of about 15%, and a top speed of about 15 km/h (8 knots). Although research in MHDDs hasn’t ceased yet, the elemental problem of seawater not really being that great as the fluid without e.g. adding more ions to it has meant that ships like the Yamato-1 are likely to remain an oddity like the Lun-class ekranoplan ground effect vehicle.
In 1966, a mathematician named [Leo Moser] proposed what sounds like a simple problem: What’s the largest shape you can move through a 1-meter corridor with a right-angle corner? Now, Korean mathematics whiz [Baek Jin-eon] claims to have solved the problem, nearly 60 years later.
The trick is, apparently, the shape of the sofa. By 1968, [John Hammerley] introduced a shape that did better than a rectangle, and by 1992, [Joseph Gerver] proposed something shaped like a phone handset, which remains the largest anyone had found, at 2.2195 square meters.
Food poisoning is never a fun experience. Sometimes, if you’re lucky, you’ll bite into something bad and realize soon enough to spit it out. Other times, you’ll only realize your mistake much later. Once the tainted food gets far enough into the digestive system, it’s too late. Your only option is to strap in for the ride as the body voids the toxins or pathogens by every means available, perhaps for several consecutive days.
After previously putting carbon fiber-reinforced PLA filament under the (electron) microscope, the [I built a thing] bloke is back with a new video involving PLA-CF, this time involving co-extrusion rather than regular dispersed chopped CF. This features a continuous CF core that is enveloped by PLA, with a sample filament spool sent over by BIQU in the form of their CarbonCore25 filament.
In the previous video chopped CF in PLA turned out to be essentially a contaminant, creating voids and with no integration of the CF into the polymer matrix. Having the CF covered by PLA makes the filament less abrasive to print, which is a definitely advantage, but does it help with the final print’s properties? Of note is that this is still chopped CF, just with a longer fiber length (0.3-0.5 mm).
Samples of the BIQU filament were printed on a Bambu Lab H2D printer with AMS. In order to create a clean fracture surface, a sample was frozen in liquid nitrogen to make it easy to snap. After this it was coated with gold using a gold sputtering system to prepare it for the SEM.
As an electromagnetic radiation phenomenon, it’s perhaps not so surprising that light is affected by a magnetic field. This Faraday effect (FE) has been used since its discovery by [Michael Faraday] in 1845 for a wide range of applications, allowing for the manipulation of light’s polarization, something which is very useful in the field of optics, for remote sensing and spintronics. Despite this being such a well-known property of EM radiation a recent study claims to have made a new discovery here, with what they claim is about the ‘optical magnetic field’.
Their central claim is that it is not just the electrical component that contributes to the FE, but also the magnetic one, due to Zeeman energy that expresses itself from the magnetic component as a form of inverse FE. Based on their experimental findings they estimate that it contributes to the final measured FE by about 17% at a wavelength of 800 nm.
While definitely a very niche physics paper, and with no immediate implications, if independently confirmed it could deepen our understanding of the Faraday effect, and how to use it in future technologies.