NASA’s Curiosity Mars Rover Gets A Major Software Upgrade

Although the Curiosity rover has been well out of the reach of human hands since it touched down on Mars’ surface in 2012, this doesn’t mean that it isn’t getting constant upgrades. Via its communication link with Earth it receives regular firmware updates, with the most recent one being the largest one since 2016. In addition to code clean-up and small tweaks to message formats, this new change should make Curiosity both smarter and have its wheels last longer.

The former helps to avoid the long idle times between navigating, as unlike its younger sibling, Curiosity does not have the dedicated navigation computer for more autonomous driving. Although it won’t make the 11-year old rover as nimble as its sibling, it should shorten these pauses and allow for more navigating and science to be done. Finally, the change to reduce wear on the wheels is fairly simple, but should be rather effective: this affects the amount of steering that Curiosity needs to do while driving in an arc.

With these changes in place, Curiosity should be all ready to receive its newest sibling as it arrives in a few years along with even more Mars helicopters.

ESA’s Jupiter-bound Probe Hits Antenna Snag

While the few minutes it takes for a spacecraft’s booster rocket to claw its way out of Earth’s gravity well might be the most obviously hazardous period of the mission, an incredible number of things still need to go right before anyone on the ground can truly relax. Space is about as unforgiving an environment as you can imagine, and once your carefully designed vehicle is on its way out to the black, there’s not a whole lot you can do to help it along if things don’t go according to plan.

That’s precisely where the European Space Agency (ESA) currently finds themselves with their Jupiter Icy Moons Explorer (Juice) spacecraft. The April 14th launch from the Guiana Space Centre went off without a hitch, but when the probe’s 16 meter (52 foot) radar antenna was commanded to unfurl, something got jammed up. Judging by the images taken from onboard cameras, the antenna has only extended to roughly 1/3rd its total length.

An onboard view of the antenna.

The going theory is that one of the release pins has gotten stuck somewhere, preventing the antenna from moving any further. If that’s the case, it could mean jiggling the pin a few millimeters would get them back in the game. Unfortunately, there’s no gremlins with little hammers stowed away in the craft, so engineers on the ground will have to get a little more creative. Continue reading “ESA’s Jupiter-bound Probe Hits Antenna Snag”

Thinking Inside The Box

Last week, I wrote about NASA’s technology demonstrator projects, and how they’ve been runaway successes – both the Mars rovers and the current copter came from such experimental beginnings. I argued that letting some spirit of experimentation into an organization like NASA is probably very fruitful from time to time.

And then a few days later, we saw SpaceX blow up a rocket and completely shred its launch platform in the process. Or maybe it was the other way around, because it looks like the concrete thrown up by the exhaust may have run into the engines, causing the damage that would lead to the vehicle spinning out of control. SpaceX was already working on an alternative launch pad using water-cooled steel, but it ran what it had. They’re calling the mission a success because of what they learned, but it’s clearly a qualified success. They’ll rebuild and try again.

In comparison, the other US-funded rocket run by Boeing, the SLS suffered years of delays, cost tremendous amounts of money, and has half the lift of SpaceX’s Super Heavy. But it made it to space. Science was done, many of the CubeSats onboard got launched, the unmanned capsule orbited the moon, and splashed down safely back on earth. They weren’t particularly taking any big risks, but they got the job done.

The lore around SpaceX is that they’re failing forward to success. And it’s certainly true that they’ve got their Falcon 9 platform down to a routine, at a lower cost per launch than was ever before possible, and that their pace has entirely shaken up the conservative space industry. They’ll probably get there with their Starship / Super Heavy too. SLS was an old-school rocket, and they had boring old flame diverters on their launch pad, which means that SLS will never take off from Mars. On the other hand, one of the two systems has put a payload around the Moon.

Maybe there’s something to be said for thinking inside the box from time to time as well?

Rising To The Occasion: A Brief History Of Crewed High Altitude Balloons

Piccard inspects an instrument on his balloon (Image: Bundesarchiv, Bild 102-10382 / CC-BY-SA 3.0)

We think of human flight as a relatively modern affair, with a few claims to the first airplane all around the turn of the last century. But people flew much earlier than that by using hot air balloons as well as gas-filled ones. While the Montgolfier brothers get most of the credit for hot air ballooning in 1783, there are some reports that a Brazilian priest may have lifted himself with a balloon as early as 1709.

Regardless, we’ve had balloons a good century earlier than winged flight, if not longer. While the device is deceptively simple, it is possible to get a balloon to very high altitudes without a lot of specialized technology. Airplanes at high altitudes need a way to get enough oxygen to fuel their engines, or they have to rely on rockets. Either way, there are plenty of design and operational challenges.

Balloons, of course, can simply rise to the occasion. Auguste Piccard and an assistant took a gas-filled balloon to 15,781 meters in 1931. Their gondola was pressurized, and they were the first humans to see the curvature of the Earth and the dark sky above. That record wouldn’t stand for long, though.

CCCP-1

The Soviet Union was keenly interested in Piccard’s flight, and the Soviet Air Force set about to build a research vessel, CCCP-1 (in English, USSR-1), that flew in 1933. The envelope was a large amount of thin fabric impregnated with latex and filled with hydrogen. The air-tight gondola presented several challenges in design. Most of the science experiments were outside, of course, and in 1933, you didn’t have an Arduino and RC servos to control things.

Continue reading “Rising To The Occasion: A Brief History Of Crewed High Altitude Balloons”

The Freedom To Fail

When you think of NASA, you think of high-stakes, high-cost, high-pressure engineering, and maybe the accompanying red tape. In comparison, the hobby hacker has a tremendous latitude to mess up, dream big, and generally follow one’s bliss. Hopefully you’ll take some notes. And as always with polar extremes, the really fertile ground lies in the middle.

[Dan Maloney] and I were thinking about this yesterday while discussing the 50th flight of Ingenuity, the Mars helicopter. Ingenuity is a tech demo, carrying nothing mission critical, but just trying to figure out if you could fly around on Mars. It was planned to run for five flights, and now it’s done 50.

The last big tech demo was the Sojourner Rover. It was a small robotic vehicle the size of a microwave oven that they hoped would last seven days. It went for 85, and it gave NASA the first taste of success it needed to follow on with 20 years of Martian rovers.

Both of these projects were cheap, by NASA standards, and because they were technical demonstrators, the development teams were allowed significantly more design freedom, again by NASA standards.

None of this compares to the “heck I’ll just hot-air an op-amp off an old project” of weekend hacking around here, but I absolutely believe that a part of the tremendous success of both Sojourner and Ingenuity were due to the risks that the development teams were allowed to take. Creativity and successful design thrives on the right blend of constraint and freedom.

Will Ingenuity give birth to a long series of flying planetary rovers as Sojourner did for her rocker-bogie based descendants? Too early to tell. But I certainly hope that someone within NASA is noticing the high impact that these technical demonstrator projects have, and also noting why. The addition of a little bit of hacker spirit to match NASA’s professionalism probably goes a long way.

NASA’s Ingenuity Mars Helicopter Completes 50th Flight

While NASA’s Perseverance rover brought an array of impressive scientific equipment to the surface of Mars, certainly its most famous payload is the stowaway helicopter Ingenuity. Despite being little more than a restricted-budget experiment using essentially only off-the-shelf components that you can find in your smartphone and e-waste drawer, the tenacious drone managed to complete its fiftieth flight on April 13 — just days before the two year anniversary of its first flight, which took place on April 19th of 2021.

Engineers hoped that Ingenuity would be able to show that a solar-powered drone could function in the extremely thin atmosphere of Mars, but the experiment ended up wildly exceeding expectations.  No longer a simple technology demonstrator, the helicopter has become an integral part of Perseverance’s operations. Through its exploratory flights Ingenuity can scout ahead, picking the best spots for the much slower rover, with rough terrain only becoming a concern when it’s time to land.

Since leaving the relatively flat Jezero Crater floor on January 19th of 2023, Ingenuity has had to contend with significantly harsher terrain. Thanks to upgraded navigation firmware the drone is better to determine safe landing locations, but each flight remains a white-knuckle event. This is also true for each morning’s wake-up call. Although the rover is powered and heated continuously due to its nuclear power source, Ingenuity goes into standby mode overnight, after which it must re-establish its communication with the rover.

Though there’s no telling what the future may hold for Ingenuity, one thing is certain — its incredible success will shape upcoming missions. NASA is already looking at larger, more capable drones to be sent on future missions, which stand to help us explore the Red Planet planet faster than ever. Not a bad for a flying smartphone.

Continue reading “NASA’s Ingenuity Mars Helicopter Completes 50th Flight”

See Satellites In Broad Daylight With This Sky-Mapping Dish Antenna

If you look up at the night sky in a dark enough place, with enough patience you’re almost sure to see a satellite cross the sky. It’s pretty cool to think you’re watching light reflect off a hunk of metal zipping around the Earth fast enough to never hit it. Unfortunately, it doesn’t work during the daylight hours, and you really only get to see satellites in low orbits.

Thankfully, there’s a trick that allows you to see satellites any time of day, even the ones in geosynchronous orbits — you just need to look using microwaves. That’s what [Gabe] at [saveitforparts] did with a repurposed portable satellite dish, the kind that people who really don’t like being without their satellite TV programming when they’re away from home buy and quickly sell when they realize that toting a satellite dish around is both expensive and embarrassing. They can be had for a song, and contain pretty much everything needed for satellite comms in one package: a small dish on a motorized altazimuth mount, a low-noise block amplifier (LNB), and a single-board computer that exposes a Linux shell.

After figuring out how to command the dish to specific coordinates and read the signal strength of the received transponder signals, [Gabe] was able to cobble together a Python program to automate the task. The data from these sweeps of the sky resulted in heat maps that showed a clear arc of geosynchronous satellites across the southern sky. It’s quite similar to something that [Justin] from Thought Emporium did a while back, albeit in a much more compact and portable package. The video below has full details.

[Gabe] also tried turning the dish away from the satellites and seeing what his house looks like bathed in microwaves reflected from the satellite constellation, which worked surprisingly well — well enough that we’ll be trawling the secondary market for one of these dishes; they look like a ton of fun.

Continue reading “See Satellites In Broad Daylight With This Sky-Mapping Dish Antenna”