A Look Inside A DIY Rocket Motor

[Joe Barnard] made a solid propellant rocket motor, and as one does in such situations, he put it through its paces on the test stand. The video below is not about the test, nor is it about the motor’s construction. Rather, it’s a deconstruction of the remains of the motor in order to better understand its design, and it’s pretty interesting stuff.

Somewhere along the way, [Joe], aka “BPS.Space” on YouTube, transitioned from enthusiastic model rocketeer to full-fledged missile-man, and in the process stepped up his motor game considerably. The motor that goes under the knife — or rather, the bandsaw — in this video is his “Simplex V2,” a completely DIY build of [Joe]’s design. For scale, the casing is made from a 6″ (15 cm) diameter piece of aluminum tubing over a meter in length, with a machined aluminum forward closure and a composite nozzle assembly. This is a pretty serious piece of engineering.

The closure and the nozzle are the focus of the video, which makes sense since that’s where most of the action takes place. To understand what happened during the test, [Joe] lopped them off and cut them roughly in half longitudinally. The nozzle throat, which was machined from a slug of graphite, fared remarkably well during the test, accumulating only a little slag from the propellant, a combination of powdered aluminum, ammonium perchlorate, and HTBP resin. The lower part of the nozzle, made from phenolic-impregnated linen, did pretty well too, building up a pyrolyzed layer that acted much like a space capsule’s ablative heat shield would. The forward closure, whose sole job is to contain the inferno and direct the exhaust anywhere but up, took more of a beating but stood up to the challenge. Especially interesting was the state of the O-rings and the way that the igniter interfaced with the closure.

Post mortems like these are valuable teaching tools, and while it must be heartbreaking to destroy something you put so much work into, you can’t improve what you can’t measure. Hats off to [Joe] for the peek inside his world. Continue reading “A Look Inside A DIY Rocket Motor”

A photo of a farmer in Kazakhstan wearing a balaclava mask standing in front of a farm house with a rusting piece of Soyuz space capsule used as part of the farm's animal feed trough

One Giant Steppe For Space Flight

In a recent photo essay for the New Yorker magazine, author Keith Gessen and photographer Andrew McConnell share what life is like for the residents around the launch facility and where Soyuz capsules land in Kazakhstan.

Read the article for a brief history of the Baikonur spaceport and observations from the photographer’s fifteen visits to observe Soyuz landings and the extreme separation between the local farmers and the facilities built up around Baikonur. A local ecologist even compares the family farmers toiling around the busy spaceport to a scene our readers may be familiar with on Tatooine.

Continue reading “One Giant Steppe For Space Flight”

Orion Ceases Operations, Future Of Meade Unclear

There was a time when building a telescope was a rite of passage for budding astronomers, much as building a radio was the coming age for electronics folks. These days, many things are cheaper to buy than build, even though we do enjoy building anything we can. Orion was a big name in telescopes for many years. Their parent company also owned Meade and Coronado, both well-known optical brands. A recent video from [Reflactor] brought it to our attention that Orion abruptly ceased operations on July 9th.

We always hate to hear when well-known brands that serve a big part of our community vanish. According to [Reflactor], people who have telescopes with the company for repair are likely to never see them again. [Dylan O’Donnell] also had a video about it (see below), and, as he notes, at that time, the website was still operating, but it’s gone now. To add further fuel to the fire Sky & Telescope ran an article on July 12th saying that Meade was also on the chopping block, although at the time of this writing, their site is still online.

You have to wonder what problems you might have selling telescopes today. Many people live where there is light pollution. We’d like to think there are still people who want to ponder the universe from their backyard, though.

There are still people selling telescopes, so presumably, one of them — maybe Celestron — will take up the slack. Or maybe we’ll see a resurgence in telescope homebrewing.

After all, if you have a 3D printer, you could make a 114/900 mm telescope on a tight budget. Or, try IKEA.

Continue reading “Orion Ceases Operations, Future Of Meade Unclear”

Printed In Space: 3D-Printed Metal Parts Shown Off After Returning From The ISS

The European Space Agency (ESA) is showing 3D-printed metal parts made onboard the International Space Station using a printer and materials the agency sent earlier this year.  While 3D printing onboard the ISS is nothing new, the printing of metal parts in space is an important advancement. The agency’s goals are to be able to produce more tools and spares in situ rather than having to rely on resupply missions. An ambitious idea being pitched is to use captured space debris as input as well, which would further decrease the ISS’s dependence on Earth and expensive cargo runs from the bottom of the gravity well.

Continue reading “Printed In Space: 3D-Printed Metal Parts Shown Off After Returning From The ISS”

Your Name In Landsat

We’re guessing most readers can cite things from their youth which gave them an interest in technology, and spurred on something which became a career or had a profound impact on their life. Public engagement activities for technology or science have a crucial role in bringing forth the next generations of curious people into those fields, and along the way they can provide some fun for grown-ups too.

A case in point is from NASA’s Landsat engagement team, Your Name In Landsat. Type in a text string, and it will spell it out in Earth features seen by the imaging satellites, that resemble letters. Endless fun can be had by all, as the random geology flashes by.

The text entry form with a pop-up warning only A to Z are accepted.
No text emojis, boo hiss!

In itself, though fun, it’s not quite a hack. But behind the kids toy we’re curious as to how the images were identified, and mildly sad that the NASA PR people haven’t seen fit to tell us. We’re guessing that over the many decades of earth images there exists a significant knowledge base of Earth features with meaningful or just amusing shapes that will have been gathered by fun-loving engineers, and it’s possible that this is what informed this feature. But we’d also be curious to know whether they used an image classification algorithm instead. There must be a NASA employee or two who reads Hackaday and could ask around — let us know in the comments.

Meanwhile, if LANDSAT interests you, it’s possible to pull out of the air for free.

Charles Duke during his interview with Jack Gordon. (Credit: Jack Gordon, YouTube)

Lunar Landing Lunacy: Charles Duke Confronted With Reality-Deniers

Lunar Module pilot Charles Duke saluting the US flag during Apollo 16. (Credit: NASA)
Lunar Module pilot Charles Duke saluting the US flag during Apollo 16. (Credit: NASA)

Imagine: you spent years training for a sojourn to the Moon, flew there on top of a Saturn V rocket as part of Apollo 16, to ultimately land on the lunar surface. You then spend the next few days on the surface, walking and skipping across the lunar regolith while setting up experiments and exploring per your mission assignments. Then, you pack everything up and blast off from the lunar surface to the orbiting command module before returning to Earth and a hero’s welcome. Then, decades later, you are told to your face that none of that ever happened. That’s the topic of a recent interview which [Jack Gordon] recently did with astronaut [Charles Duke].

None of these ‘arguments’ provided by the reality-denying crowd should be too shocking or feel new, as they range from the amount of fuel required to travel to the moon (solved by orbital mechanics) to the impossibility of lighting on the Moon (covered by everyone and their dog, including the Mythbusters in 2008).

Of course, these days, we have lunar orbiters (LRO and others) equipped with powerful cameras zoomed in on the lunar surface, which have photographed the Apollo landing sites with the experiments and footsteps still clearly visible. Like today’s crowd of spherical Earth deniers, skeptics will denounce anything that doesn’t fit their ill-conceived narrative as ‘faked’ for reasons that only exist in their fevered imaginations.

A common objection we’ve heard is that if we went to the moon back then, why haven’t we been back? The reason is obvious: politics. The STS (Shuttle) project sucked up all funding and the USSR collapsed. Only recently has there been a new kind of ‘space race’ in progress with nations like China. That doesn’t keep countless individuals from dreaming up lunar landing conspiracy theories to file away with their other truth nuggets, such as how microwaved and genetically engineered foods cause cancer, vaccines are another government conspiracy to control the population, and nuclear power plants can explode like nuclear bombs.

Perhaps the best takeaway is that even if we have not found intelligent life outside Earth yet, for at least a few years, intelligent life was the only kind on Earth’s Moon. We wish [Charles Duke] many happy returns, with maybe a casual return to the Moon in the near future as well, to frolic once more on the lunar surface.

Not that there hasn’t been a moon hoax, just not lately. If you want to watch the old Apollo video, it has been improved in recent years.

Continue reading “Lunar Landing Lunacy: Charles Duke Confronted With Reality-Deniers”

Citizen Scientists Spot Super Fast Moving Object In NASA Data

When you were five, you probably spotted your best friend running at “a million miles an hour” when they beat everybody at the local athletics meet. You probably haven’t seen anything that fast snice. According to NASA, though, a group of citizen scientists spotted a celestial object doing just that!

The group of citizen scientists were involved in a NASA program called Backyard Worlds: Planet 9. They were working on images from NASA’s Wide-field Infrared Explorer mission. Scanning through stored images, Martin Kabatnik, Thomas P. Bickle, and Dan Caselden identified a curiously speedy object termed CWISE J124909.08+362116.0. There are lots of fast-moving objects out in space, but few quite as fast as this one. It’s quite literally zooming through the Milky Way at about 1 million miles per hour.

It’s unclear exactly what the object is. It appears light enough to be a low-mass star, or potentially a brown dwarf—somewhere in between the classification of gas giant and star. It also has suspiciously low iron and metallic content. The leading hypothesis is that CWISE J1249 might have been ejected from a supernova, or that it got flung around a pair of black holes.

For now, it remains a mystery. It’s a grand discovery that really highlights the value of citizen science. If you’ve been doing your own rigorous scientific work—on NASA’s data or your own—do let us know!