If you’re looking for a high entertainment value per byte of code, [Nardax] has you covered with his wearable spellcasting controller. With not much effort, he has built a very fun looking device, proving what we’ve always known: a little interaction can go a long way.
[Nardax] originally intended his glorified elbow-mount potentiometer to be a fireworks controller. Ironically, he’s now using it to throw virtual fireballs instead. Depending on the angle at which he holds his elbow before releasing it, he can cast different spells in the game World of Warcraft. We’re not at all sure that it helps his gameplay, but we’re absolutely sure that it’s more fun that simply mashing different keys.
There’s a lot of room for expansion here, but the question is how far you push it. Sometimes the simplest ideas are the best. It looks like [Nardax] is enjoying his product-testing research, though, so we’ll keep our eyes out for the next iterations of this project.
It’s a staple of home CNC construction, the 3D mill built on the bench from available parts. Be the on a tubular, plywood, or extruded aluminum frame, we’ve seen an astonishing array of mills of varying levels of capability.
The norm for such a mill is to have a computer controlling it. Give it a CAD file, perform the software magic, press button, receive finished object (Or so the theory goes). It’s a surprise then to see a mill in which the input doesn’t come from a CAD file, instead all control is done by hand through the medium of a joystick. [Mark Miller]’s 3D printed freeform carving machine is a joystick-controlled mill with a rotary tool on an arm facing a rotatable bed, and it can perform impressive feats of carving in expanded foam.
You might ask why on earth you should make a machine such as this one when you could simply pick up a rotary tool in your hand and start carving. And you’d be right, from that perspective there’s an air of glorious uselessness to the machine. But to take that view misses the point entirely, it’s a clever build and rather a neat idea. We notice he’s not put up the files yet for other people to have a go, if someone else fancies making CNC software work with it then we’re sure that would be possible.
There is a video showing the basic movements the mill is capable of, which we’ve put below the break. Best to say, though, it’s one on which to enable YouTube’s double speed option.
When I was asked to cover the Unconference in Los Angeles last week, I have to admit that I was a more than a little uncomfortable with the idea. I’m not big on traveling, and the idea of meeting a lot of folks was a little intimidating. Surely meeting Hackaday readers in person would be like walking into a real-life version of the comments section of a particularly controversial post. Right?
I couldn’t have been more wrong.
The LA Unconference, held at the Supplyframe Design Lab in Pasadena, was a far more collegial and engaging conference than any I’ve been to in my professional life. I couldn’t have asked for a better group to share the afternoon and evening with, and the quality of the talks was excellent. The Design Lab turned out to be a great space for the event — a large main room for the talks with plenty of little areas to break away for impromptu discussions and networking.
On Saturday the Hackaday community turned out in force to try something new. The first Hackaday Unconference was held in three places at the same time, and I was in Chicago and was amazed at the turnout and variety of presentations. The image above sums up the concept quite well, everyone shows up ready to give an eight minute talk, but as a whole, no one knows what to expect. Well, we should have known to expect awesome and that’s what we got.
As usual, people are excellent… to one another and in adapting to the fluid nature of the day. Pumping Station: One, a renowned Hackerspace in the Avondale neighborhood near downtown Chicago, opened their doors for us. Not knowing how many people to expect we set up two presentation rooms with a third on deck just in case it was needed.
We just barely squeezed everyone in one room for the first track but ended up splitting into two for part of the day. Here you can see that second room filling up. Even so we still had a handful of presentations that didn’t get a chance to shine — we simply must do this again so they can have the chance and because I had such a great time!
This is Hackaday’s global engineering initiative that encourages people to direct their skill and energy to make the world a better place. We call it the Hackaday Prize, but it’s far more than that. Join a community of talented people who enrich their own lives by seeking out new challenges and new technologies, then pioneers a way to combine them to Build Something that Matters. Show us your build by starting a Hackaday.io project page and enter today!
You Have Every Reason to Get Involved
The Hackaday Prize truly has something for everyone. Making the world a better place doesn’t end with a grand prize for a single build. Just by talking about your ideas and sharing your excitement you become the inspiration for this and every successive generation of problem solvers. But yes, there are prizes — a lot of prizes — and they’re spectacular.
We have over $250,000 in cash going out to hundreds of entries this year. The Grand Prize of $50,000 is joined once again this year by the Best Product Prize of $30,000. Four other entries will place second through fifth and receive $20k, $15k, $10k, and $5k respectively.
But the breadth of entries is too great to stop at that. We’ll select 120 projects as finalists and award each $1000. You can even get in on Seed Funding starting right away. We’re saving those details for the end of this announcement.
How Do I Build Something that Matters?
Whoa, all this talk of prizes, but you want to know what kind of hardware will be a hit for the Hackaday Prize? Here’s what you need to know: you can enter your project at any time from now until October 16th. But the exact time that you enter matters.
Your best bet is to get started right away. The first challenge of the Hackaday Prize is: Design Your Concept. Every great build starts with a plan and this is the time to show us what you got. The key is to consider if the project benefits society in some way. Show us how, document your build plan, and you can be one of the first twenty finalists to receive $1k cash and move on to compete for the big prizes.
We’ll have four more challenges that focus on different types of entries. You only need to enter one challenge, but you may choose to enter (and win) as many of the five challenges as you wish. We’ll be looking for connected devices that don’t suck Internet of Useful Things during the IuT ! IoT challenge. After that, it’s on to all things mobile with the Wheels, Wings, and Walkers challenge. Assistive Technology challenges you to make the world a better place for the physically or mentally challenged and aging or sick people of the world. And finally, a Hackaday favorite closes the challenge rounds with Anything Goes — as long as it clearly benefits society. Each of these five challenges will yield twenty finalists who receive $1000. That’s $100k!
The Return of Best Product
Two years ago we tried something new by adding the Best Product Prize to the mix and it was an enormous hit. We’re happy to be able to bring it back again this year.
There is a difficult path from a working prototype to a product ready for its audience. As hardware development is unlocked for an ever wider engineering community, we want to see the path made wider so that the journey becomes easier. Best Product is designed to do just that.
Any Hackaday Prize entry may also choose to compete and be named the Best Product (receiving much deserved recognition as well as the addition $30k prize). You need to submit your entry no later than July 24th, which includes full documentation of the project as well as a bill of materials used in the build. We’ll select twenty finalists (sending $1k to each) who will then need to deliver three working beta test units for the final judging round of the Best Product.
How Can We Pick the Top Entries?
One amazing part of the Hackaday Prize family are the world-renowned experts who donate their time and talent as Judges. They are just as eager as everyone else to see all of this creative energy focused on solving the problems facing our civilization.
When realized to their full potential, design concepts should knock the socks off of anyone who reads through them. Because of this we have one more thing in store for you during the first challenge which starts right now.
Entries with the most likes at the end of the first round will split $4,000. Each time someone on Hackaday.io “likes” your project it will move a bit higher on the leaderboard found on the Hackaday Prize page. The top projects will receive $1 for each like, with a max of $200 per entry so that at least twenty will win (but likely many more).
This seed funding is a little push to help offset the cost of building prototypes. But it really comes down to your decision to make the time and to make a difference. Enter your project in the Hackaday Prize now.
Dtto, a modular robot designed with search and rescue in mind, has just been named the winner of the 2016 Hackaday Prize. In addition to the prestige of the award, Dtto will receive the grand prize of $150,000 and a residency at the Supplyframe Design Lab in Pasadena, CA.
This year’s Hackaday Prize saw over 1,000 entires during five challenge rounds which asked people to Build Something that Matters. Let’s take a look at the projects that won the top five prizes. They exemplify the five challenge themes: Assistive Technologies, Automation, Citizen Scientist, Anything Goes, and Design Your Concept.
Grand Prize Winner ($150,000 and a residency at the Supplyframe Design Lab): Dtto is modular robot built with 3D printed parts, servo motors, magnets, and readily available electronics. Each module consists of two boxes, rounded on one side, connected by a bar. The modules can join with each other in many different orientations using the attraction of the magnets. Sections can separate themselves using servo motors.
Dtto is groundbreaking in its ability to make modular robots experimentation available to roboticists and hobbiests everywhere by sidestepping what has traditionally been a high-cost undertaking. While it’s easy to dismiss this concept, the multitude of different mechanisms built from modules during testing drives home the power of the system.
Second Place ($25,000): Reflectance Transformation Imaging is a method of photographing artifacts multiple times with a fixed camera location but changing lighting locations. When these images are combined into an interface after the fact, it allows for different textures, surface features, and material properties to be observed. Currently there are no commercial version of hardware available for this technique.
Third Place ($10,000): An optics bench is a series of jigs used to hold and precisely align elements for optical experiments. Traditionally this meant highly specialized equipment starting in the tens-of-thousands of dollars. But schools, hackerspaces, and individuals don’t need top-of-the-line equipment to begin learning about optics. The project has designed holders for salvaged optics and the ancillary materials to conduct experiments, and even includes a standardized carrying case design.
Fourth Place ($10,000): This is a reimaging of a Linear Variable Differential Transformer (LVDT). Traditionally, tilt sensors based on LVDTs are built like a small tube with an iron core that can slide from one end to the other as the tube is tilted. This new sensor turns the tube into a hollow ring, and replaces the iron core with ferrofluid (a liquid with the properties of metal). What results is a brand new sensor with properties unavailable in previous tilt sensors.
Fifth Place ($5,000). Stepper motors are known for accurate movement, but they are often used as open loop systems and prone to lose track of position either from missed steps or outside interference. Mechaduino adds a high accuracy magnetic encoder to any of several commonly available stepper motors, closing that loop and adding functionality. This includes positional awareness, but goes for beyond to velocity and torque control, and user interaction.
The Hackaday Prize is the greatest hardware build-off on the planet, and with that comes some spectacular prizes. For the inaugural Hackaday Prize in 2014, the top prize was $196,418. That’s a handsome sum, and with that, the right hardware, and enough time, anything is possible.
The winners of the first Hackaday Prize was the SatNOGs project. The SatNOGs project itself is very innovative and very clever; it’s a global network of satellite ground stations for amateur cubesats. This, in itself, is a huge deal. If you’re part of a student team, non-profit, or other organization that operates a cubesat, you only have access to that satellite a few minutes every day — whenever it’s in the sky, basically. SatNOGs is a project to put directional, tracking antennas everywhere on Earth, all connected to the Internet. This is a project that gives global ground station coverage to every amateur-built cubesat.
It’s been two years since SatNOGs won the Hackaday Prize, so how are they doing now? I caught up with some of the midwest reps of SatNOGs at this year’s Hamvention, and the project is doing very well. The steerable antenna mount designed by the SatNOGs project is fantastic, some of the Earth stations are seeing a lot of use, and the network is growing.
Two years is a long time, and since then SatNOGs has evolved into the Libre Space Foundation, a not-for-profit foundation with a mission to promote, advance and develop free and open source technologies and knowledge for space.
The premier project for the Libre Space Foundation is the UPSat, the first Open Source satellite ever launched. For the last two years, this is what the Libre Space Foundation has been working on, and soon this satellite will be orbiting the Earth. The satellite itself was recently delivered, and next month it will be launched to the International Space Station aboard a Cygnus spacecraft. After that, it will be deployed to low Earth orbit from Nanoracks’ deployment platform on the station.
This is truly an amazing project. SatNOGs brought a network of ground stations to amateur cubesats orbiting the Earth, and now the Libre Space Foundation will put an Open Source satellite into low Earth orbit. All the documentation is available on Github, and this is the best the open hardware movement has to offer. We’re proud to have SatNOGs and the Libre Space Foundation proving that Open Hardware can change the world, and we can only hope this year’s winner of the Hackaday Prize has such an impact.