An infographic showing a tap with a sensor and a flow meter display

2022 Hackaday Prize: Sensible Flow Helps You Keep Track Of Your Water Usage

Safe, clean drinking water is a scarce resource that shouldn’t be wasted. But it’s not always easy to see how much you’re using when you turn on the tap: is it one liter a minute? Is it ten? How much do you actually use when washing your hands or brushing your teeth? If you’d like to get some hard data on your water usage, have a look at [Josh EJ]’s Sensible Flow project. It contains designs for a set of sensors that measure your water consumption and a convenient little display that shows the total amount consumed.

The most obvious way of measuring water consumption is to install an off-the-shelf flow meter onto your pipe, which is something that Sensible Flow supports. But probably the most interesting part of the project is a design for a non-invasive flow sensor that you can simply attach to any type of tap. This sensor contains a nine-axis inertial measurement unit (IMU) that detects how far you’ve twisted, turned or tilted the handle, and uses that information to estimate the amount of water flow. You will need to perform an initial calibration step using a timer and measuring cup, but you won’t have to rip open your plumbing just to keep track of your water usage.

Both types of sensors are powered by a coin cell battery that is estimated to work for about one year, thanks to a power-efficient Arduino Pro Mini and a BlueTooth Low Energy (BLE) module to communicate with the base station. The base station plugs into a wall socket and shows the total water consumption on a small one-inch OLED display. STL files for the enclosures are available on the project page, along with detailed circuit diagrams that show how all the parts are connected.

We’ve seen several water flow measurement systems for home use, such as this neat ESP8266-based shower water monitor. If you prefer just a simple visual reminder to turn off the tap, have a look at this LED gadget.

Continue reading “2022 Hackaday Prize: Sensible Flow Helps You Keep Track Of Your Water Usage”

Hackaday Prize 2022: Hedge Watcher Aims To Save Precious Bird Life

Hedges aren’t just a pretty garden decoration. They’re also a major habitat for many species of insects, birds, and other wildlife. In some areas, a lot of hedge trimming goes during the time that local birds are raising their fledglings, which causes harm at a crucial time. Thus, [Johann Elias Stoetzer] and fellow students were inspired to create Hedge Watcher.

Birds can easily blend in with their surroundings, but thermal cameras are a great way to spot them.

The concept is simple – using thermal vision to spot birds inside a hedge when they may not otherwise be easily visible. Many species blend in with their surroundings in a visual manner, so thermal imaging is a great way to get around this. It can help to avoid destroying nests or otherwise harming birds when trimming back hedges. The idea was sourced from large-scale agricultural operations, which regularly use thermal cameras mounted on drones to look for wildlife before harvesting a field.

However, staring at a thermal camera readout every few seconds while trimming hedges isn’t exactly practical. Instead, the students created an augmented reality (AR) monocular to allow the user to trim hedges at the same time as keeping an eye on the thermal camera feed. Further work involved testing a binocular AR headset, as well as a VR headset. The AR setups proved most useful as they allowed for better situational awareness while working.

It’s a creative solution to protecting the local birdlife, and is to be applauded. There’s plenty of hubris around potential uses for augmented reality, but this is a great example of a real and practical one. And, if you’re keen to experiment with AR yourself, note that it doesn’t have to break the bank either!

 

Fermenter on the desk, with the front door opened and some tempeh disks visible inside of it

Hackaday Prize 2022: An Easy-To-Build Fermenter For Tempeh

[Maud Bausier] and [Antoine Jaunard] believe we should all know about tempeh — a traditional Indonesian food made out of legumes fermented with fungi. To simplify the process a bit: you get some soybeans, add a tempeh starter fungi culture to them, ferment them a while, and out comes the tempeh. It’s a great source of proteins that’s relatively easy to grow on your own. One catch, though — you do need a certain kind of climate to have it develop properly. This is why [Maud] and [Antoine] are bringing a tempeh fermenter design to this year’s Hackaday Prize.

Ready tempeh disks cut into long pieces, showing the cross-section of some. It looks pretty tasty!This fermenter’s controller drives a heating element, which adheres to a pre-programmed fermentation cycle. It also has a fan for airflow and keeping the heat uniform.

The fermenter itself is a small desktop machine with a laser-cut case helped by some CNC-cut and 3D-printed parts, electronics being a simple custom PCB coupling a Pi Pico with widely-available modules. This is clearly a project for someone with access to hackerspace or fab lab resources, but of course, all of the files are on GitHub.

Once built, this design allows you to grow tempeh disks in home conditions on a small scale. It seems the design is mostly finalized, but if you’d like to hear news about this project, they have a blog and a Mastodon feed with some recent updates.

We’ve covered a whole lot of fermentation-related hacks over these years. Most of them have been alcohol-related, but every now and then we see people building fermentation equipment for other food materials, like vinegar, yogurt and sourdough. Now, having seen this fermenter, we’ve learned of one more food hacking direction to explore. This project is one of 10 finalists for our latest Hackaday Prize round, Climate-Resilient Communities. It’s a well-deserved win, and we can’t wait to see where it goes!

Hackaday Prize 2022: An Old (and Distinguished) Camera Learns New Tricks

In the 1950s the major Hollywood studios needed impressive cinematic technologies for their epic movies, to both see off the threat from television, and to differentiate themselves from their competitors. For most of them this meant larger screens and thus larger frame film, and for Paramount, this meant VistaVision. [Steve Switaj] is working on one of the original VistaVision cameras made for the studio in the 1950s, and shares with us some of the history and the work required to update its electronics for the 2020s.

VistaVision itself had a relatively short life, but the cameras were retrieved from storage in the 1980s because their properties made them suitable for special effects work. This mostly analog upgrade hardware on this one had died, so he set to and designed a PIC based replacement. Unexpectedly it uses through-hole components for ease of replacement using sockets, and it replaces a mechanical brake fitted to the 1980s upgrade with an electronic pull back on the appropriate reel motor.

The whole thing makes for an interesting delve into some movie history, and also a chance to see some tech most of us will never encounter even if we have a thing for movie cameras.

Hackaday Prize 2022: Solar Powered LoRa Weather Station For The Masses

[Debasish Dutta] has designed a few weather stations in the past, and this, the fourth version of the system has had many of the feature requests from past users rolled in. The station is intended to be used with an external weather sensor unit, provided by Sparkfun. This handles wind speed and direction, as well as measuring rainfall. A custom PCB hosts an ESP32-WROOM module and an Ai-Thinker Ra-02 LoRa module for control and connectivity respectively. A PMS5003 sits on the PCB to measure those particulate densities, but most sensors are connected with simple 4-way I2C connectors. Temperature, humidity, and pressure are handled by a BME280 module, UV Index (SI1145), visible light (BH1750) even soil humidity and temperature with a cable-mounted SHT10 module.

All this is powered by a solar panel, which charges a 18650 cell, and keeps the show running during the darker hours. For debugging and deployment, a USB-C power port can also be used to provide charge. A 3D printed Stevenson screen type enclosure allows the air to circulate amongst the PCB-mounted sensor modules, without hopefully too much moisture making it in there to cause mischief.

On the data collection and visualization side, a companion LoRa receiver module is in progress, which is intended to pass along measurements to a variety of services. Think Home Assistant, ESP home, and that kind of thing. Software is still a work in progress, so maybe check back later to see how [Debasish] is getting on with that?

This kind of multi-sensor hosting project is nothing new here, here’s a 2019 Hackaday prize entry along the same lines. Of course, gathering and logging measurement data is only part of the problem, visualization of those measurements is also important. Why not use a mechanical approach, such as a diorama?

A device with pipes and pumps sitting next to a body of water

Hackaday Prize 2022: Otter Force One Protects Kelp Forests By Sucking Up Sea Urchins

When thinking about forests being endangered by human activity, most people would immediately think of the rainforest. Below the ocean surface, there’s another type of forest is in danger: the kelp forests off the coast of northern California. Warming sea water has triggered an explosion in the population of purple sea urchins (Strongylocentrotus purpuratus) which devour kelp at an alarming rate. It’s estimated that 90% of kelp forests have been lost to the urchins along a 350 km stretch of coastline.

The fix is as simple as getting rid of the urchins, but collecting the millions of spiny creatures manually isn’t realistic. Luckily, [RobotGrrl] designed just the tool for this task: Otter Force One, an autonomous underwater robot that can gather the aquatic interlopers and put them in a bag for removal. The device is still under development, but progress so far has been promising. The basic idea is to identify an urchin using machine vision, then dislodge it with a water jet, and finally to use a suction pump to pull it inside the machine and store it in a bag.

A prototype made from 3D printed components is currently being used to test the idea. Its motors are driven by an ESP32 with a motor controller, with the system powered by a set of beefy lithium batteries. Tests with plastic urchin models confirm that the suction mechanism works, though the water jet and machine vision systems still need to be tested. But even without these in place the Otter Force One can still be used by human divers to improve their urchin-gathering efficiency.

We’ll definitely keep an eye on this project, and hopefully see it evolve into a fully-automated urchin hunter. Underwater pest-control robots are not completely new: we already saw a laser-powered delouser for use on salmon farms. There are also robotic starfish and octopuses.

Hackaday Prize 2022: DIY Landslide Warning System

Landslides can be highly dangerous to both people and property. As with most natural disasters, early warning can make all the difference. [Airpocket] has built a cheap, affordable system that hopes to offer just that.

The system relies on a network of sensors built with Sony Spresense controllers, built into solar garden light enclosures which provide a watertight enclosure and a sustainable power supply. The controllers are paired with accelerometers to detect movement, and communicate over a WiSUN connection back to a Raspberry Pi 4B base station. When a deployed sensor station detects movement, it sends a message back to the base station, which sounds the alarm that a landslide may be imminent.

Early testing shows the concept works in theory. In practice, some improvements to reduce power draw and increase communication reliability are required. However, it’s a solid proof of concept for a simple landslide warning system.

Early warning is always key when it comes to things like landslides, tsunamis, and earthquakes. In fact, the US Geological Survey has done its own work on predicting earthquakes and providing early warning, too. Video after the break.

Continue reading “Hackaday Prize 2022: DIY Landslide Warning System”