A man in black glasses and a black t-shirt has his arms resting on a grey workbench. Between his opened hands are the two halves of a copper ice press. They are fist-sized copper cylinders. The lower half has large spiraling grooves to aid in the release of excess water from the ice being formed as it melts.

Make Ice Spheres In A Copper Press

Perfectly clear ice spheres are nifty but can be a bit tricky to make without an apparatus. [Seth Robinson] crafted a copper ice press to make his own.

Copper is well-known for its thermal conductivity, making it a perfect material for building a press to melt ice into a given shape. Like many projects, a combination of techniques yields the best result, and in this case we get to see 3d printing, sand casting, lost PLA casting, lathe turning, milling, and even some good old-fashioned sanding.

The most tedious part of the process appears to be dip coating of ceramic for the lost PLA mold, but the finished result is certainly worth it. That’s not to say that any of the process looks easy if you are a metal working novice. Taking over a week to slowly build up the layers feels a bit excruciating, especially compared to 3D printing the original plastic piece. If you’re ever feeling discouraged watching someone else’s awesome projects, you might want to stick around to the end when [Robinson] shows us his first ever casting. We’d say his skill has improved immensely over time.

If you’re looking for something else to do with casting copper alloys, be sure to checkout this bronze river table or [Robinson’s] copper levitation sphere.

Thanks to [DjBiohazard] for the tip!

Continue reading “Make Ice Spheres In A Copper Press”

The Bus Pirate 5 Sure Can Glitch

Own a Bus Pirate 5? Now, it can do power glitching, thanks to [Matt Brugman’s] demo and contributions to the stock code. This is also a great demo of Bus Pirate’s capabilities and programmability! All you need is the Bus Pirate and a generic Arduino – load a glitch-vulnerable code example into the Arduino, get yourself a generic FET-based glitching setup, and you too can play.

The Arduino board outputs data over UART, and that’s used as a trigger for the Bus Pirate’s new glitch feature – now mainline, thanks to [Matt]’s pull request. It’s pretty feature-complete, too — all parameters are configurable, it can vary the glitching interval, as one would want, and the code checks for success conditions so that it can retry glitching automatically.

In this demo, it only took six consecutive attempts to successfully glitch the ATMega328P – wouldn’t you know it, the code that got glitched was pulled almost wholesale from an IoT device. Glitching remains an underappreciated vector for reverse-engineering, and there’s really no shortage of hacks it allows you to do – get yourself a FET, a Bus Pirate, or maybe just an ESP8266, and join the glitching-aware hackers club!

Want to know more about the Bus Pirate 5? Check out our hands-on review of the hacker multi-tool from last year.

To Test A (Smart) LED

Adding LEDs to a project used to be enough to make it cool. But these days, you need arrays of addressable multi-color LEDs, and that typically means WS2812B or something similar. The problem is that while it was pretty easy to test garden-variety LEDs, these devices can be a bit harder to troubleshoot. [Gokux] has the answer, as you can see in the video below.

Testing these was especially important to [Gokux] because they usually swipe the modules from other modules or LED strips. The little fixture sends the correct pulses to push the LED through several colors when you hold it down to the pads.

However, what if the LED is blinking but not totally right? How can you tell? Easy, there’s a reference LED that changes colors in sync with the device under test. So, if the LEDs match, you have a winner. If not… well, it’s time to desolder another donor LED.

This is one of those projects that you probably should have thought of, but also probably didn’t. While the tester here uses a Xiao microcontroller, any processor that can drive the LEDs would be easy to use. We’d be tempted to breadboard the tester, but you’d need a way to make contact with the LED. Maybe some foil tape would do the trick. Or pogo pins.

Continue reading “To Test A (Smart) LED”

Flow chart containing directions on how to determine if you should use this toolkit as a resident, business owner, civic activist, or government official

Hackable Cities

There are many ways to hack the world. Graduate students at Parsons The New School for Design developed a guide for hacking the biggest piece of technology humans have developed – the city.

One of the things we love here at Hackaday is how hacking gives us a tool to make the world a better place for ourselves and those around us. Even if it’s a simple Arduino-based project, we’re (usually) trying to make something better or less painful.

Taking that same approach of identifying a problem, talking to the end user, and then going through design and execution can also apply to projects at a larger scale. Even if you live in an already great neighborhood, there’s likely some abandoned nook or epic vista that could use some love to bring people out from behind their screens to enjoy each other’s company. This guide walks us through the steps of improving public space, and some of the various ways to interact with and collate data from the people and organizations that makeup a community. This could work as a framework for growing any nascent hacker or makerspaces as well.

Hacking your neighborhood can include anything: a roving playground, a light up seesaw, or a recycling game. If you’ve seen any cool projects in this regard, send them to the tipsline!

Handheld Compass CNC Lets Teensy Do The Driving

If somebody asked you to visualize a CNC router, you’d probably think of some type of overhead gantry that moves a cutting tool over a stationary workpiece. It’s a straightforward enough design, but it’s not without some shortcomings. For one thing, the scale of such a machine can quickly become an issue if you want to work on large pieces.

But what if you deleted the traditional motion system, and instead let the cutting tool roam freely? That’s the idea behind the open source Compass Handheld CNC. Looking a bit more like a combat robot than a traditional woodworking tool, the Compass tracks its movement over the workpiece using a Teensy 4.1 microcontroller and four PMW3360 optical flow sensors. With a pair of handles that look like a flight yoke and a display that shows the router’s current position versus where it should be, the user can “drive” the tool to cut or carve the desired design.

Admittedly, the Compass doesn’t pack quite the same punch as a more traditional setup. Rather than a beefy spindle motor or a full-sized consumer router clamped up in the gantry, the Compass uses a Dremel 3000. It’s fine for routing out an engraving and other fine work, but you wouldn’t want to use it for cutting thick stock. To help keep the work area clear and prevent dust and chips from jamming up the works, the 3D printed body for the tool includes a connection for a dust collection system.

If this all seems familiar, you may be remembering a tool we first covered nearly a decade ago — the Shaper Origin. That router, which is still on the market incidentally, utilizes optical tracking and fiducial markers to keep track of its position. We’d be interested in seeing how well the Compass compares over large distances without similar reference points.

Tricked Out Miter Fence Has All The Features

“World’s best” is a mighty ambitious claim, regardless of what you’ve built. But from the look of [Marius Hornberger]’s tricked-out miter fence, it seems like a pretty reasonable claim.

For those who have experienced the torture of using the standard miter fence that comes with machine tools like a table saw, band saw, or belt sander, any change is likely to make a big difference in accuracy. Miter fences are intended to position a workpiece at a precise angle relative to the plane of the cutting tool, with particular attention paid to the 90° and 45° settings, which are critical to creating square and true joints.

[Marius] started his build with a runner for the T-slot in his machine tools, slightly undersized for the width of the slot but with adjustment screws that expand plastic washers to take up the slack. An aluminum plate equipped with a 3D printed sector gear is attached to the runner, and a large knob with a small pinion mates to it. The knob has 120 precisely positioned slots in its underside, which thanks to a spring-loaded detent provide positive stops every 0.5°. A vernier scale also allows fine adjustment between positive stops, giving a final resolution of 0.1°.

Aside from the deliciously clicky goodness of the angle adjustment, [Marius] included a lot of thoughtful touches. We particularly like the cam-action lock for the angle setting, which prevents knocking your fine angle adjustment out of whack. We’re also intrigued by the slide lock, which firmly grips the T-slot and keeps the fence fixed in one place on the machine. As for the accuracy of the tool, guest meteorologist and machining stalwart [Stefan Gotteswinter] gave it a thumbs-up.

[Marius] is a veteran tool tweaker, and we’ve featured some of his projects before. We bet this fence will see some use on his much-modified drill press, and many of the parts for this build were made on his homemade CNC router.

Continue reading “Tricked Out Miter Fence Has All The Features”

Vacuum Forming With 3D Printed Moulds And Sheets

Vacuum forming is perhaps one of the less popular tools in the modern maker arsenal, something which surprises us a bit because it offers many possibilities. We’ve created our own vacuum forms on 3D printed moulds for ages, so it’s interesting to see [Pisces Printing] following the same path. But what you might not realize at first is that the vacuum forming sheets themselves are also 3D printed.

The full video is below the break, and in it he details making a mould from PETG, and in particular designing it for easy release. The part he’s making is a belt guard for a table top lathe, and the PETG sheet he’s forming it from is also 3D printed. He makes the point that it’s by no means perfect, for example he shows us a bit of layer separation, but it seems promising enough for further experimentation.  His vacuum forming setup seems particularly small, which looks as though it makes the job of making a sheet somewhat simpler.

The cost of a vacuum forming sheet of whichever polymer is hardly high, so we can’t see this technique making sense for everyday use. But as we’ve seen in previous experiments, the printed sheets so make it easy to add color and texture to the final product, which obviously adds some value to the technique.

Continue reading “Vacuum Forming With 3D Printed Moulds And Sheets”