Giving Life To An Undead Baby Doll

If carving a pumpkin this month is too passé for you, take a shot at [Jason Suter’s] instructable and build an animatronic legless zombie child that will surely creep out anyone who has a fear of dolls or other vacant-faced toy babies.

Beginning with a sacrificial doll, [Jason] dismembers all of the limbs and head from the torso in order to make room for the robotic upgrades. The servo motors which animate the new wooden dowel bones are mounted to a chassis cut with a CNC machine. [Jason’s] instructions include some nice diagrams demonstrating how the points of articulation at the shoulders and elbows work in conjunction to produce different flavors of crawling and dragging.

FWFSZPYI0LDVY63.LARGEFFU405MI0LDVY54.LARGE

To top it off, the head is attached to its own mounting plate with tendons that rock back and forth in a miserable undead sort-of fashion. As an added nicety, he explains how to install a bluetooth module into the circuitry so he can tweak and upload his example code to the Arduino brain remotely without needing to get his hands near it. There is of course some additional melting, painting, and doll torture required to achieve that rough-up undead look… but that’s all just icing on top of a well executed piece of animatronics.

In his video [Jason] gives us an overview of his zombie’s build and also shows it in action:

Continue reading “Giving Life To An Undead Baby Doll”

Even More Power Wheels Racers

With the Power Wheels Racing series wrapping up for the year, the teams are winding down and writing up their build and rebuild logs for their cars. In previous years, the kids from MIT, a.k.a. MITERS, have brought small electric cars to the races, but nothing like this. It’s a true Power Wheels, or at least the plastic shell, an alternator, a huge battery pack, and a completely custom drivetrain.

[Dane], [Ben], [Rob], [Mike], and [Ciaran] started their build with an alternator that was salvaged from [Charles]’ Chibi-Mikuvan, added a motor from a CDROM drive for a sensor, and basked in the glory of what this cart would become. The frame was crafted from 1″ square tube, a custom disc brake machined, and a 10S2P battery pack built.

The alternator the team used for a motor had a rather small shaft, and there were no readily available gearboxes. The team opted to build their own with helical gears milled on the MITERS Bridgeport mill. That in itself is worth of a Hackaday post. Just check out this video.

With the build held together with duct tape a baling wire, the team headed out to the races in Detroit. Testing the racer before getting to Detroit would have been a good idea. During the endurance race, a set of 10″ rear tires were torn apart in just four laps, impressively bad, until you realize the smaller pink tires that were also from Harbor Freight fared even worse.

After a few races, the MITERS team figured out the weaknesses of their car and managed to get everything working perfectly for the race at Maker Faire NY.

Continue reading “Even More Power Wheels Racers”

Tracking Footballs With Magnetic Fields

Official NFL footballs are crafted by hand by a company in Chicago called Wilson Sporting Goods. The footballs that are made there typically range from 11 to 11.5 inches in length and weigh anywhere between 14 and 15 ounces on average. Originally, animal bladders lined the outside, occasionally from the inside of a pig, giving the traditional American football the long-standing nickname of a “pigskin.” Now a days, they consist of cowhide leather or vulcanized rubber with laces that are stitched to the top adding mass. This causes the oblong spheres to be naturally lopsided. This is fixed by inserting extra weight to the opposite side of the football balancing it out. Knowing this, a clever hacker will realize that the balancing spot is a perfect place to subtly add a motion tracking transmitter like this one. Doing so makes it possible to the track not only the position of the ball on the field, but its precise location in 3D space!

Since each football is unique, variations between one ball to another exist. This means that embedding a circuit into a football only modifies the equipment slightly, which is a good thing because sports fanatics tend to be very opinionated about whether or not technology should influence the game. So long as the transmitter and loop antenna added to the air bladder doesn’t pass that threshold of about an ounce (or so) difference in weight, then the football itself really isn’t affected much.

Continue reading “Tracking Footballs With Magnetic Fields”

Ping Pong For The IT Office

The office environment over at [Adam]’s place of employment has recently become one of the many IT-related offices with a ping pong table, a cliché that he readily points out. However, [Adam] and the other folks at the office decided to step up their game a little bit by making this automated ping pong table.

The table first keeps track of the players with specialized RFID tags that are placed in the handle of the paddles. The paddles are unique to each player, and when they are swiped past a reader on the table the scoring system registers the players at the table.

Small capacitive touch sensors on the underside of the table allow the players to increment their score when a point is made. The scoreboard is a simple but a very well-polished interface that has audio cues for each point. The system is also able to keep track of the winners and the overall records are tracked, allowing for office-wide rankings.

This is the best table-related game hack since the internet-connected foosball table, and should be welcome in any office for some extra break room fun at work! All of the code is available on the project site.

Foosball Now Part Of The Internet Of Things

internet of things foosball

At a local LAN event, [Thomas] wanted a way to easily show off the capabilities from some of the Internet-of-Things devices everyone keeps talking about. His idea was to build an internet-connected foosball/table soccer/table football table to show off some hardware and software.

[Thomas]’s table automates almost everything that is part of the great sport of foosball. Once a user logs in using the barcode scanner, the game begins by deploying the tiny ball with parts salvaged from a Roomba. The table uses infrared sensors to detect the ball. Once a goal is scored, it is posted online where anyone can see the current score and a history of all of the games played on the table.

There are a few other unique touches on the foosball table, such as the LED lighting, touch screen displays, and an STM32-E407 ARM processor to tie the whole machine together.

For more information including the source code and demonstrations, check out [Thomas]’s project blog. And, if you get lonely, perhaps you can try the robot foosball player!

The Counter-Strike Airsoft Robot

F6R9THZHR4SR0HV.MEDIUM

[Jon] and his brother converted an RC car into a robot that can fire airsoft pellets into the air. The little motorized vehicle was disassembled and a handheld was attached to the top. A pulling mechanism was put in place and a safety procedure was added to make sure no accidents occurred.

The chassis stand was created to hold the handle. The setup was then tested at this point, and a Raspberry Pi server was configured to have a camera that would act as the eyes for the robot. Once everything was in place, the wheels hit the ground and the vehicle was able to move around, positioning itself to aim the servos at a designated target. Footage was transmitted via the web showing what the robot was looking at.

A video of the remote-controlled counter-strike robot can be seen after the break. You could consider this your toy army. That makes this one your toy air force.

Continue reading “The Counter-Strike Airsoft Robot”

Hot Wheels Toy Turned Radar Gun

Yl3jKbSculaOIdoE

[Ken] was strolling through a department store one day looking for a gift for his daughter when he stumbled across a Mattel’s Hot Wheels Radar Gun for $30. He purchased it, took it home, and tested it out. Surprisingly, the device had the ability to not only scan toy cars, but also regular size vehicles, spinning bicycle wheels, and joggers as well. As his mind began to churn coming up with new ideas, he purchased another toy and repackaged it creating a more professional grade DIY radar speed detector.

The process was pretty simple. First, he disassembled the device getting to the Doppler radar system inside, which was similar to the professional radar guns that police officers used. This toy was able to transmit a continuous wave at 10.525GHz, measuring the returning frequency of returning waves that bounced off of moving objects. However, the detection range of this toy was severely limited. [Ken] then upgraded the antenna housing unit with a 3″ diameter acrylic document tube, making the quality look a lot better. After that, the system was attached to a tripod allowing for the device to be easily transported and setup near a busy traffic road, quietly watching the speed of cars driving by.

Continue reading “Hot Wheels Toy Turned Radar Gun”