Super Shoes Lead The Way

Super shoe insole with a red sneaker

Many of us spend so much time looking down at our phones that we miss the world all around us. [Dhairya] hopes to change that with Super Shoes, a pair of enhanced insoles that let your toes do the navigating while you enjoy the sights. Each insole has a Bluetooth radio and a microcontroller. Three coin cell vibrator motors act as an output device under the small toes, while a capacitive touch pad under the big toe handles input. Careful positioning of the electronics keeps the foam insoles flexible.

Using the shoes is as simple as walking around. Say you needed walking directions. You would set the destination on your smartphone. The shoes would then tie in to your smartphone’s GPS and maps application. From there, it’s simply a matter of following your toes. If the toes on your left foot vibrate, turn left. Vibration on the right foot indicates a right turn. When your destination is at hand, both feet will vibrate rapidly to celebrate.

[Dhairya] envisions a cloud service called ShoeCentral which will store a database of the user’s likes and dislikes. Based upon this data, ShoeCentral will guide the user to new restaurants or places they may like. All of this and hands free? Where do we sign up?

Continue reading “Super Shoes Lead The Way”

Blinky LED Necklace That Actually Looks Chic

LED bib necklace by Agy

[Agy] a fabric hacker in Singapore has made a chic light sensitive LED necklace, and written up the tutorial on her blog  Green Issues by Agy. The lovely thing about this hack is that it doesn’t look like a breadboard round her neck, and most of the non-electronic components have been upcycled. [Agy] even used Swarovski crystals as LED diffusers for extra bling.

Using a LilyPad Arduino with a light sensor and a few LEDs, [Agy’s] circuit is not complicated. She seems to be just branching out in to wearable tech, so it is nice that she learnt to program different modes for bright and low light (see video below). Her background in sewing, refashioning and upcycling does show through in her crafty use of an old pair of jeans and lace scraps for this project.

We love tech focused jewelry like [TigerUp’s] LED matrix pendants or [Armilar’s] Nixie-ify Me Necklace, but they do scream Geek. DIY electronically enhanced accessories are becoming more commonplace with the variety of micro-controller platforms expanding rapidly. Low energy wearable boards like MetaWear are making it easy for the tech to be discreet and easily connected to your smartphone.  3D printing is enabling us to create durable enclosures, settings and diffusers like the ones used for LED Stegosaurus Spikes. With all these things, hobby wearable projects can not only be functional and durable, but can also look great too.

Do you think this necklace would look out of place in a non-geeky gathering? Have you got any helpful tips for [Agy’s] code? Have you tried using gems or crystals as diffusers and what were the results? Let us know in the comments below.

Continue reading “Blinky LED Necklace That Actually Looks Chic”

Flexible Arduino Sure To Be A Hit

 

Scrolling LED on soda can

Wearable, lightweight hacks have long been dominated by the Lilypad. This will probably change with the introduction of the Printoo. Using printable circuit technology, the Printoo takes a modular approach to enable hackers, makers, and engineers alike to construct flexible circuits that can be put on almost anything, including paper!

Powered by the all too familiar ATmega328, the Printoo core module is fully compatible with the Ardunio IDE. The modular design enables functionality with several other printed devices including displays, batteries, sensors and even LED strips to make many different projects possible. One of the most interesting modules is the 1.5 volt, 500 micron thick electrochromic display.

Be sure to check out their Kickstarter, which has a nice video that demonstrates the project. If funded, they will be available in October in case you want to get your hands on one. Or feel free to make your own. Just be sure to let us know if you do!

Wearable Flames With Fur And LED Strips

wearable-flames-with-fur-and-LED-strips

[Finchronicity] over on Hackaday Projects has made a pretty awesome furry LED Vest to keep him warm and well lit at this year’s Burning Man. He is using a Teensy 3.0 that drives strips of 470 WS2811 LEDs.

The vertically aligned strips run on a continuous sequence which reaches up to 31 frames per second using precompiled animations. The effects rendered in Processing or video mapped, are captured frame by frame and stored as raw color data to an SD card. Playback uses the NeoPixel library to control the strips. The high resolution LEDs, with the video mapped fire and the long pile fur, create one of the nicest flame effects we have seen on clothing.

We’ve also seen the Teensy 3.0 and WS2811 LEDs used as a popular combination for building huge displays, a 23ft tall pyramid, and more recently in the RFID jacket at Make Fashion 2014. Have you made or seen a great Teensy/WS2811 project you would like to share with us? If so, let us know the details in the comments below.

Continue reading “Wearable Flames With Fur And LED Strips”

Step Into The Ring With Fight Coach

box01

 

As MMA continues to grow in popularity, the competition is getting tougher. There’s always someone else out there who’s training harder and longer than you are. So how do you get the advantage over your competitors? More push-ups? Sit-ups? Eat more vegetables? What about installing custom 2 by 1 inch, 5 gram PCB’s armed with an ATmega32U4, a MPU-6050 6 axis accelerometer and an RN-41 Bluetooth module into each of your gloves? Now that’s what we’re talking about.

[Vincent] and [Jooyoung] of Cornell joined their classmates in turning out another cool piece of electrical engineering. Fight Coach records data from the fighter’s gloves so that it can not only be analyzed to improve performance, but also interact with the fighter in real-time.  Though not quite as immersive as some fighter training techniques we’ve seen, Fight Coach might just give a fighter a slight edge in the ring.

Fight Coach offers 3 modes of training: Defense mode, Damage mode and Free-Training mode. As usual with Cornell projects, all code, schematics and a wealth of information on the project is just a click away. And stick around after the break for a video demonstration of Fight Coach.

Continue reading “Step Into The Ring With Fight Coach”

Sewing Conductive Thread In Parallel Lines

[Cynthia] has shared a great video of  machine sewing parallel lines of conductive thread onto ribbon using a cording foot which usually comes standard with most machines. This technique could be particularly useful when using addressable LEDs like a NeoPixel to get the ground, data, and positive lined up fairly accurately. Sewing the conductive thread onto ribbon also makes it a hell of a lot easier to attach to many garments or textiles,  and also makes it easier to replace or reuse.

The method is pretty easy, essentially using the grooves in the cording foot to guide the conductive treads and ensuring even spacing. Two of the lines are sewn down approximately 3 mm apart using a zigzag stitch. The third line is sewn separately making sure the stitching doesn’t break the first two lines. In the video, a striped ribbon is used which has slight troughs that additionally helps the threads stay in place and the sewer to stay on target.

[Cynthia] of Cynthia Designs Studio has been experimenting with embedding electronics in textiles and has quite a few great videos that you can check out on the Cynthia Designs Studio YouTube channel.

We have seen a machine embroidered LED matrix and a hand sewn LED quilt here on Hackaday, but those who have tried know that conductive thread can be very tricky to work with and keep conductivity.  Do you have any tips or tricks for hand or machine sewing conductive thread? If so, please share in the comments below.

Continue reading “Sewing Conductive Thread In Parallel Lines”

The Ancient Greeks Invented Kevlar Over 2 Millennia Ago

In 356-323 B.C. Alexander the Great of Macedon conquered almost the entire known world by military force. Surprisingly, not much is known about how he did it! An ancient and mysterious armor called Linothorax was apparently used by Alexander and his men which may have been one of the reasons for his ever so successful conquest. A group of students at the University of Wisconsin Green Bay (UWGB) have been investigating in detail and making their own version of it.

The problem is this type of armor decomposes naturally over time unlike more solid artifacts of stone and metal — meaning there is no physical proof or evidence of its existence. It has been described in around two dozen pieces of ancient literature and seen in over 700 visuals such as mosaics, sculptures and paintings — but there are no real examples of it. It is made (or thought to be) of many layers of linen glued together, much the same way that Kevlar body armor works.

The cool thing about this project is the students are designing their own Linothorax using authentic fabrics and glues that would have been available in that time period. The samples have been quite successful, surviving sharp arrows, swords, and even swinging axes at it. If this is the secret to Alexander the Great’s success… no wonder!

The group has lots of information on the topic and a few videos — stick around to learn more!

Continue reading “The Ancient Greeks Invented Kevlar Over 2 Millennia Ago”