Stout Homebrew Radio Pumps Out 200W Of AM Goodness

In this day and age, with cheap online shopping, software defined radio and bargain-basement Baofengs from China, the upstart radio ham is spoilt for choice. Of course, there’s nothing quite like the charm of keying up your own homebrewed rig, cooked up in the garage from scratch. [Paul], aka [VK3HN], knows just how it feels, and put together an epic 200 watt Class D AM rig to blast his signal on the airwaves.

An example of an Arduino used in one of [Paul]’s builds.
It’s a build following on from the work of another radio ham, [Laurie], aka [VK3SJ]. Younger hackers will note the Arduino Nano at the heart of the project, running the VFO and handling all the relevant transmit/receive switching. We can only imagine how welcome modern microcontrollers must have been to old hands at amateur radio, making synthesizing all manner of wild frequencies a cinch.

The amount of effort that has gone into the build is huge. There are handwound coils for the PWM low-pass filter, and the PCB is home-etched in ferric chloride, doing things the old-school way. There’s also a healthy pile of dead components that sacrificed their lives in the development of this build. Perhaps our favorite part is the general aesthetic – we can’t get over the combination of hand-drawn copper traces and off-the-shelf Arduinos.

Many components perished in the development of this powerful rig.

It’s a build that far exceeds the Australian legal limits, so it only gets keyed up to 120W in real use. This has the benefit of keeping the radio operating far in the safety zone for its components, helping keep things cool and stable. We’re sure [Paul] will be getting some great contacts on this rig. If you’re suffering from low power yourself, consider an amplifer build. Video after the break.

Continue reading “Stout Homebrew Radio Pumps Out 200W Of AM Goodness”

WWII Aircraft Radio Roars To Life: What It Takes To Restore A Piece Of History

I’ve been told all my life about old-timey Army/Navy surplus stores where you could buy buckets of FT-243 crystals, radio gear, gas masks, and even a Jeep boxed-up in a big wooden crate. Sadly this is no longer the case. Today surplus stores only have contemporary Chinese-made boots, camping gear, and flashlights. They are bitterly disappointing except for one surplus store that I found while on vacation in the Adirondacks: Patriot of Lake George.

There I found a unicorn of historical significance; an un-modified-since-WW2 surplus CBY-46104 receiver with dynamotor. The date of manufacture was early-war, February 1942. This thing was preserved as good as the day it was removed from its F4F Hellcat. No ham has ever laid a soldering iron or a drill bit to it. Could this unit have seen some action in the south Pacific? Imagine the stories it could tell!

My unconventional restoration of this radio followed strict rules so as to minimize the evidence of repair both inside and out yet make this radio perform again as though it came fresh off the assembly line. Let’s see how I did.

Continue reading “WWII Aircraft Radio Roars To Life: What It Takes To Restore A Piece Of History”

1940s Portable Radio Is A Suitcase

The meaning of the word portable has changed a bit over the years. These days something has to be pretty tiny to be considered truly portable, but in the 1940s, anything with a handle on it that you could lift with one hand might be counted as portable electronics. Zenith made a line of portable radios that were similar to their famous Transoceanic line but smaller, lighter, and only receiving AM to reduce their size and weight compared to their big brothers. If you want to see what passed for portable in those days, have a look at [Jeff Tranter’s] video (below) of a 6G601 — or maybe it is a GG601 as it says on the video page. But we think it is really a 6G601 which is a proper Zenith model number.

According to [Jeff], 225,350 of these radios were made, and you can see that it closes up like a suitcase. The initial 6 in the model number indicates there are 6 tubes and the G tells you that it can run with AC or batteries.

Continue reading “1940s Portable Radio Is A Suitcase”

The Power Of Directional Antennas

AM broadcasting had a big problem, but usually only at night. During the day the AM signals had limited range, but at night they could travel across the country. With simple wire antennas, any two stations on the same frequency would interfere with each other. Because of this, the FCC required most radio stations to shut down or reduce power at night leaving just a handful of “clear channel” stations for nighttime programming. However, creating directional antennas allowed more stations to share channels and that’s the subject of a recent post by [John Schneider].

When it comes to antennas, ham radio operators often think bigger is better. After all, hams typically want to work stations far away, not some specific location. That’s not true in the commercial world, though. The big breakthrough that led to, for example, cell phones was the realization that making smaller antennas with lower power at higher frequencies would allow for reuse of channels. In those areas the focus is on making cells smaller and smaller to accommodate more people. You can think of AM broadcasting as using the same idea, except with relatively large cells.

Continue reading “The Power Of Directional Antennas”

A Modern Take On The Crystal Radio

We’ll admit that [3DSage] has a pretty standard design for a crystal radio. What we liked, though, was the 3D printed chassis with solderless connections. Of course, the working pieces aren’t 3D printed — you need an earphone, a diode, and some wire too. You can see the build and the finished product in the video below.

Winding the coil is going to take awhile, and the tuning is done with the coil and capacitance built into the tuning arrangement so you won’t have to find a variable capacitor for this build. There is a picture of the radio using a razor blade point contact with a pencil lead, so if you want to really scrimp on the diode, that works too, and you can see how at the end of the video.

We did like the use of cord ends from a sewing and craft supply store to serve as solderless springs. This would be a great item to print off a few dozen copies and use it for a school or youth group activity. You might want to pair it with an AM transmitter, though so the kids won’t be dismayed at what is playing on AM in most markets. [3DSage] uses a sink for ground — literally a kitchen sink. However, if you try this, make sure all the pipes are metal or you won’t get a good ground and you probably won’t pick up any stations.

We’d like to get some of those springs and make some other kind of starter projects with them like the kits many of us had as kids. This reminded us of the old foxhole radios, found during World War II.

Continue reading “A Modern Take On The Crystal Radio”

Dust Off Those AM Radios, There’s Something Good On!

If you are into vintage electronics or restoring antique radio equipment you may be very disappointed with the content offerings on AM broadcast radio these days. Fortunately there is a way to get around this: build your own short-range AM broadcast station and transmit curated content to your radios (and possibly your neighbors). There are several options for creating your own short-range AM broadcast station, and this gives you something fun to tune into with your vintage radio gear.

Continue reading “Dust Off Those AM Radios, There’s Something Good On!”

Data Exfiltration With Broadcast Radio And CD-ROM Drives

The first music played on personal computers didn’t come out of fancy audio cards, or even a DAC. the first audio system in a personal computer was simply holding an AM radio up to the case and blinking address pins furiously. This worked wonderfully for homebrew computers where EMC compliance hadn’t even become an afterthought, but the technique still works today. [Chris] is playing music on the radio by sending bits over the system bus without using any wires at all.

[Chris]’ code is based on the earlier work of [fulldecent], and works pretty much the same. To play a sound over the radio, the code simply writes to a location in memory when the waveform should be high, and doesn’t when the waveform is low.

Of course the ability to exfiltrate information over an airgap has a few more nefarious purposes, but [Chris] also has another way of doing just that which is undefeatable by a TEMPEST shielded computer. He can send one bit at a time by opening and closing a CD-ROM drive, capturing these bits with a webcam. Is it useful? It’s hard to imagine how this setup could ever capture any valuable data, but it is a proof of concept.