FibreSeeker 3: Continuous Carbon Fiber Vs Chopped CF

Although you can purchase many types of FDM filaments containing ‘carbon fiber’ these days, they are in no way related to the carbon fiber (CF) composite materials used for rocket hulls and light-weight bicycles. This is because the latter use continuous fibers, often in weaved CF mats, whereas the FDM filaments just use small, chopped, fragments of CF. Obviously this will not result in the same outcome, which makes it interesting that a company called Fibre Seek is now running a KickStarter for a very affordable co-extrusion FDM printer that can add continuous CF to any part. They also sent a few test parts to [Dr. Igor Gaspar] for testing against regular FDM CF prints.

It should be noted here that continuous CF with FDM is not new, as Markforged already does something similar, though at a ‘Contact us for a price quote’ level. The advantage of the Fibre Seek solution is then the co-extrusion that would make printing with continuous CF much more flexible and affordable. Based on the (sponsored) [CNC Kitchen] video of a few weeks ago at a tradeshow, the FibreSeeker 3 printer is effectively a standard CoreXY FDM printer, with the special co-extrusion dual print head that allows for CF to be coated with the target thermoplastic before being printed as normal.

Continue reading “FibreSeeker 3: Continuous Carbon Fiber Vs Chopped CF”

Why Chopped Carbon Fiber In FDM Prints Is A Contaminant

A lot of claims have been made about the purported benefits of adding chopped carbon fiber to FDM filaments, but how many of these claims are actually true? In the case of PLA at least, the [I built a thing] channel on YouTube makes a convincing case that for PLA filament, the presence of chopped CF can be considered a contaminant that weakens the part.

Using the facilities of the University of Basel for its advanced imaging gear, the PLA-CF parts were subjected to both scanning electron microscope (SEM) and Micro CT imaging. The SEM images were performed on the fracture surfaces of parts that were snapped to see what this revealed about the internal structure. From this, it becomes apparent that the chopped fibers distribute themselves both inside and between the layers, with no significant adherence between the PLA polymer and the CF. There is also evidence for voids created by the presence of the CF.

To confirm this, an intact PLA-CF print was scanned using a Micro CT scanner over 13 hours. This confirmed the SEM findings, in that the voids were clearly visible, as was the lack of integration of the CF into the polymer. This latter point shouldn’t be surprising, as the thermal coefficient of PLA is much higher than that of the roughly zero-to-negative of CF. This translates into a cooling PLA part shrinking around the CF, thus creating the voids.

Continue reading “Why Chopped Carbon Fiber In FDM Prints Is A Contaminant”

Full Scale Styrofoam DeLorean Finally Takes Flight

It’s 2025 and we still don’t have flying cars — but we’ve got this full-scale flying DeLorean prop from [Brian Brocken], and that’s almost as good. It’s airborne and on camera in the video embedded below.

We’ve written about this project before; first about the mega-sized CNC router [Brian] used to carve the DeLorean body out of Styrofoam panels, and an update last year that showed the aluminum frame and motorized louvers and doors.

Well, the iconic gull-wing doors are still there, and still motorized, and they’ve been joined by a tire-tilting mechanism for a Back To The Future film-accurate flight mode. With the wheels down, the prop can use them to steer and drive, looking for all the world like an all-white DMC-12.

The aluminum frame we covered before is no longer in the picture, though. It’s been replaced by a lighter, stiffer version made from carbon fibre. It’s still a ladder frame, but now with carbon fiber tubes and “forged” carbon fiber corners made of tow and resin packed in 3D printed molds. There’s been a tonne of work documented on the build log since we last covered this project, so be sure to check it out for all the details.

Even in unpainted white Styrofoam, it’s surreal to see this thing take off; it’s the ultimate in practical effects, and totally worth the wait. Honestly, with talent like [Brian] out there its a wonder anyone still bothers with CGI, economics aside.

Thanks to [Brian] for the tip! If you have a project you’ve hit a milestone with, we’d love to see it, even if it doesn’t trigger the 80s nostalgia gland we apparently all have embedded in our brains these days. Send us a tip!

Continue reading “Full Scale Styrofoam DeLorean Finally Takes Flight”

I Gotta Print More Cowbell

Since the earliest days of affordable, home 3D printers, the technology behind them has been continuously improving. From lowering costs, improving print quality, increasing size and detail, and diversifying the types of materials, it’s possible to get just about anything from a 3D printer today with a minimum of cost. Some of the things that printers can do now might even be surprising, like this upgrade that makes [Startup Chuck]’s 3D printer capable of printing realistic-sounding cowbells out of plastic.

The key to these metal-like prints is a filament called PPS-CF which is a carbon fiber-reinforced polyphenylene sulfide, or PPS. PPS-CF has a number of advantages over other plastics including high temperature tolerance and high dimensional stability, meaning its less likely to warp or deform even in harsh environments. But like anything with amazing upsides, there are some caveats to using this material. Not only does the carbon fiber require more durable extruder nozzles but PPS-CF also needs an extremely hot print head to extrude properly in addition to needing a heated bed. In [Startup Chuck]’s specific case he modified his print head to handle temperatures of 500°C and his print bed to around 100°C. This took a good bit of work just to supply it with enough energy to get to these temperatures and caused some other problems as well, like the magnet on the printer bed demagnetizing above around 75°C.

To get to a working cowbell took more than just printer upgrades, though. He had to go through a number of calibrations and test prints to dial in not only the ideal temperature settings of the printer but the best thicknesses for the cowbell itself so it would have that distinct metallic ring. But cowbells aren’t the only reason someone might want to print with carbon-reinforced materials. They have plenty of uses for automotive, chemical processing, high voltage, and aerospace applications and are attainable for home 3D printers. Just make sure to take some basic safety precautions first.

Continue reading “I Gotta Print More Cowbell”

Random Wire Antenna Uses No Wire

Ideally, if you are going to transmit, you want a properly-tuned resonant antenna. But, sometimes, it isn’t practical. [Ham Radio Rookie] knew about random wire antennas but didn’t want a wire antenna. So, he took carbon fiber extension poles and Faraday tape and made a “random stick” antenna. You can check it out in the video below.

We aren’t sure what normal people are doing with 7-meter-long telescoping poles, but — as you might expect — the carbon fiber is not particularly conductive. That’s where the tape comes in. Each section gets some tape, and when you stretch it out, the tape lines up.

Continue reading “Random Wire Antenna Uses No Wire”

On Carbon Fiber Types And Their Carcinogenic Risks

Initially only seeing brief popular use as the filament in incandescent lighting, carbon fibers (CF) experienced a resurgence during the 20th century as part of composite materials that are lighter and stronger than materials like steel and aluminium, for use in aircraft, boats and countless more applications. This rising popularity has also meant that the wider population is now exposed to fragments of CF, both from using CF-based products as well as from mechanically processing CF materials during (hobby) projects.

It is this popularity that has also led to the addition of short CF sections to FDM 3D printing filaments, where they improve the mechanical properties of the printed parts. However, during subsequent mechanical actions such as sanding, grinding, and cutting, CF dust is created and some fraction of these particles are small enough to be respirable. Of these, another fraction will bypass the respiratory system’s dust clearing mechanisms, to end up deep inside the lungs. This raises the question of whether CF fragments can be carcinogenic, much like the once very popular and very infamous example of asbestos mineral fibers.

Continue reading “On Carbon Fiber Types And Their Carcinogenic Risks”

Could Carbon Fiber Be The New Asbestos?

Could carbon fiber inflict the same kind of damage on the human body as asbestos? That’s the question which [Nathan] found himself struggling with after taking a look at carbon fiber-reinforced filament under a microscope, revealing a sight that brings to mind fibrous asbestos samples. Considering the absolutely horrifying impact that asbestos exposure can have, this is a totally pertinent question to ask. Fortunately, scientific studies have already been performed on this topic.

Example SEM and TEM images of the released particles following the rupture of CFRP cables in the tensile strength test. (Credit: Jing Wang et al, Journal of Nanobiotechnology, 2017)
Example SEM and TEM images of the released particles following the rupture of CFRP cables in the tensile strength test. (Credit: Jing Wang et al, Journal of Nanobiotechnology, 2017)

While [Nathan] demonstrated that the small lengths of carbon fiber (CF) contained in some FDM filaments love to get stuck in your skin and remain there even after washing one’s hands repeatedly, the aspect that makes asbestos such a hazard is that the mineral fibers are easily respirable due to their size. It is this property which allows asbestos fibers to nestle deep inside the lungs, where they pierce cell membranes and cause sustained inflammation, DNA damage and all too often lung cancer or worse.

Clearly, the 0.5 to 1 mm sized CF strands in FDM filaments aren’t easily inhaled, but as described by [Jing Wang] and colleagues in a 2017 Journal of Nanobiotechnology paper, CF can easily shatter into smaller, sharper fragments through mechanical operations (cutting, sanding, etc.) which can be respirable. It is thus damaged carbon fiber, whether from CF reinforced thermal polymers or other CF-containing materials, that poses a potential health risk. This is not unlike asbestos — which when stable in-situ poses no risk, but can create respirable clouds of fibers when disturbed. When handling CF-containing materials, especially for processing, wearing an effective respirator (at least N95/P2) that is rated for filtering out asbestos fibers would thus seem to be a wise precaution.

The treacherous aspect of asbestos and kin is that diseases like lung cancer and mesothelioma are not immediately noticeable after exposure, but can take decades to develop. In the case of mesothelioma, this can be between 15 and 30 years after exposure, so protecting yourself today with a good respirator is the only way you can be relatively certain that you will not be cursing your overconfident young self by that time.

Continue reading “Could Carbon Fiber Be The New Asbestos?”