Trace Line Clock Does It With Magnets

We love a good clock project, and [byeh_ in] has one with a design concept we don’t believe we have seen before. The Trace Line Clock has smooth lines and a clean presentation, with no sockets or visible mechanical fixtures.

Reading the clock is quite straightforward once one knows what is going on. At its heart, the unmarked face is much like any other analog clock face, and on the inside is a pretty normal clock movement. The inner recessed track on the face represents hours, and the outer is minutes. The blue line connects the two, drawing a constantly changing line.

Continue reading “Trace Line Clock Does It With Magnets”

A Stylish Moon And Tide Clock For The Mantlepiece

Assuming you’re not stuck in a prison cell without windows, you could feasibly keep track of the moon and tides by walking outside and jotting things down in your notebook. Alternatively, you could save a lot of hassle by just building this moon and tide clock from [pjdines1994] instead.

The build is based on a Raspberry Pi Pico W, which is hooked up to a real-time clock module and a Waveshare 3.7-inch e-paper display. Upon this display, the clock draws an image relevant to the current phase of the moon. As the write-up notes, it was a tad fussy to store 24 images for all the different lunar phases within the Pi Pico, but it was achieved nonetheless with a touch of compression. As for tides, it covers those too by pulling in tide information from an online resource.

It’s specifically set up to report the local tides for [pjdines1994], reporting the high tide and low tide times for Whitstable in the United Kingdom. If you’re not in Whitstable, you’d probably want to reconfigure the clock before using it yourself. Unless you really want to know what’s up in Whitstable, of course. If you so wish, you can set the clock up to make its own tide predictions by running local calculations, but [pjdines1994] notes that this is rather more complicated to do. The finished result look quite good, because [pjdines1994] decided to build it inside an old carriage clock that only reveals parts of the display showing the moon and the relevant tide numbers.

We’ve featured some other great tide clocks before, like this grand 3D printed design. If you’ve built your own arcane machine to plot the dances of celestial objects, do be sure to let us know on the tipsline!

Any Old TV Can Be A Clock With Arduino

If you’ve got an old black and white TV, it’s probably not useful for much. There are precious few analog broadcasters left in the world and black and white isn’t that fun to watch, anyway. However, with a little work, you could repurpose that old tube as a clock, as [mircemk] demonstrates.

The build is based around an Arduino Nano R3. This isn’t a particularly powerful microcontroller board, but it’s good enough to run the classic TVOut library. This library lets you generate composite video on an Atmel AVR microcontroller with an absolute minimum of supporting circuitry. [mircemk] paired the Arduino with a DS3231 real-time clock, and whipped up code to display the time and date on the composite video output. He then also demonstrates how to hack the signal into an old TV that doesn’t have a specific input for composite signals.

You’ll note the headline says “any old TV can be a clock,” and that’s for good reason. Newer TVs tend to eschew the classic composite video input, so the TVOut library won’t be any good if you’re trying to get a display up on your modern-era flatscreen. In any case, we’ve seen the TVOut library put to good use before, too. Video after the break.

Continue reading “Any Old TV Can Be A Clock With Arduino”

There’s Nothing Backwards About This Laser Cut Retrograde Clock

It’s clock time again on Hackaday, this time with a lovely laser-cut biretrograde clock by [PaulH175] over on Instructables. If you’ve never heard of a ‘biretrograde clock,’ well, we hadn’t either. This is clearly a form of retrograde clock, which unlike the name implies doesn’t spin backwards but oscillates in its motion– the hands ‘go retrograde’ the same way the planets do.

The oscillating movement is achieved via a pair of cams mounted on the hour and minute shafts of a common clock mechanism. As the shafts (and thus cams) turn, the minute and hour arms are raised and drop. While that could itself be enough to tell the time, [Paul] goes one further and has the actual hands on pivots driven by a gear mechanism on the cam-controlled arms. You might think that that extra reversal is what makes this a ‘biretrograde clock’ but in the clockmaker’s world that’s just saying it’s a retrograde clock with two indicators: in this case, minute and hour.

It’s a fairly rare way to make a clock, but we’ve seen one before. That older project was 3D printed, which might be more your speed; if you prefer laser-cutting, though, [Paul]’s Instructable includes SVG files. Alternatively, you could take a different approach and use voltmeters to get the same effect.

A Logical Clock That Pretends To Be Analog

[kcraske] had a simple plan for their clock build. They wanted a digital clock that was inspired by the appearance of an analog one, and they only wanted to use basic logic, with no microprocessors involved. Ultimately, they achieved just that.

Where today you might build a clock based around a microcontroller and a real-time clock module, or by querying a network time server, [kcraske] is doing all the timekeeping in simpler hardware. The clock is based around a bunch of 74-series logic chips, a CD4060 binary counter IC, and a 32.768 KHz crystal, which is easy to divide down to that critical 1 Hz. Time is displayed on the rings of LEDs around the perimeter of the clock—12 LEDs for hours, and 60 each for minutes and seconds. Inside the rings, the ICs that make up the clock are arranged in a pleasant radial configuration.

It’s a nice old-school build that reminds us not everything needs to run at 200 MHz or hook up to the internet to be worthwhile. We’ve featured some other fun old-school clocks of late, too. Meanwhile, if you’re cooking up your own arcane timepieces, we’d love to hear about it on the tipsline.

Making A Clock With A Retooled Unihiker K10

The Unihiker K10 is intended to be a small single-board solution for light AI and machine learning tasks. However, you don’t have to use it in that way if you don’t want to. [mircemk] figured out how to repurpose the device, and whipped up a simple Internet clock build to demonstrate how it’s done. 

While the Unihiker K10 is based on the common ESP32 microcontroller, out of the box, it isn’t compatible with standard Arduino libraries. However, [mircemk] had previously figured out how to get the K10 to play nice with the Arduino environment, building a simple light meter as a proof of concept. It just took a little tinkering to get everything playing nicely together, but soon enough, the TFT LCD and a light sensor were playing nicely with the K10 platform.

Moving forward, [mircemk] wanted to unlock more capability, so set about figuring out how to get WiFi and the onboard buttons working within the Arduino environment. A great way to test this was building a clock—the screen would show an analog clock face, the buttons would be used for control, and the WiFi would be used to query an NTP time server to keep it synced up and accurate.

It took a little work, particularly as the buttons are accessed through an external I/O expansion chip, but [mircemk] got there in the end. The clock may not be a particularly advanced project, but the write-up demonstrates how the K10 can readily be used with Arduino libraries for when you’re not interested in leveraging its fancier AI/ML capabilities.

We’ve seen a few good builds from [mircemk] before, too, like this neat proximity sensor. Continue reading “Making A Clock With A Retooled Unihiker K10”

A High Resolution ADC From Scratch

It’s a well-known conundrum that while most computers these days are digital in nature, almost nothing in nature is. Most things we encounter in the real world, whether it’s temperature, time, sound, pressure, or any other measurable phenomenon comes to us in analog form. To convert these signals to something understandable by a digital converter we need an analog-to-digital converter or ADC, and [Igor] has built a unique one from scratch called a delta sigma converter.

What separates delta sigma converters apart is their high sampling rate combined with a clever way of averaging the measurements to get a very precise final value. In [Igor]’s version this average is provided by an op-amp that integrates the input signal and a feedback signal, allowing for an extremely precise digital value to be outputted at the end of the conversion process. [Igor] has built this one from scratch as well, and is using it to interface a magnetic rotary encoder to control digital audio playback.

Although he has this set up with specific hardware, he has enough detail in his video (including timing diagrams and explanations of all of the theory behind these circuits) for anyone else to build one of these for other means, and it should be easily adaptable for plenty of uses. There are plenty of different ADC topologies too, and we saw many different ones a few years ago during our op-amp challenge.

Continue reading “A High Resolution ADC From Scratch”