Transistor Logic Clock Gets Stacked Up

A couple years back we covered a very impressive transistor logic clock which was laid out so an observer could watch all of the counters doing their thing, complete with gratuitous blinkenlights. It had 777 transistors on 41 perfboards, and exactly zero crystals: the clock signal was extracted from the mains frequency of 50 Hz. It was obviously a labor of love and certainly looked impressive, but it wasn’t exactly the most practical timepiece we’d ever seen.

Creator [B Brett] recently wrote in to share news that the second version of his transistor logic clock has been completed, and we can confidently say it’s a triumph. He’s dropped the 41 perfboards in favor of 9 professionally fabricated PCBs, which this time around are stacked vertically to make it a bit more desktop friendly. The end goal of a transistor logic clock that you can take apart to study is the same, but this “MkII” as he calls it is a far more refined version of the concept.

In addition to using fewer boards, the new MkII design cuts the logic down to only 283 transistors. This is thanks in part to the fact that he allowed himself the luxury of including an oscillator this time. The clock uses a standard watch crystal at 32.768 KHz, the output of which is converted into a square wave through a Schmitt trigger. This is then fed into a divider higher up the stack which uses flip flops to produce 1Hz and 2Hz signals for use throughout the rest of the clock.

In addition to the original version of this project, we’ve also seen a beautiful single-board wall mounted version, and even a “dead bug” style one built from scraps.

Continue reading “Transistor Logic Clock Gets Stacked Up”

A BCD Clock For Your Desk

We see so many clocks here at Hackaday, and among those we see our fair share of binary clocks. But to see one that at first sight looks as though it might be a commercial product when it is in fact a one-off project is something special. That’s just what [Tobi4sDE] has done though, with his desktop BCD binary LED clock.

The front panel is a black PCB on which sit the LEDs that form the binary display, and its back holds an ATMega328P microcontroller and DS3231 real-time clock. A smart desktop case is 3D-printed, and while the clock is USB-powered it features a CR2032 coin cell as a backup to hold the time while the USB is disconnected.

Unexpectedly he’s used a mini USB socket rather than the expected micro USB, but the rest of the clock is one we’d probably all have on our desks given the chance. We’d even go so far as to say we’d have this one as a kit if it were available.

Of course, regular readers will notice that this isn’t the only high-standard BCD timepiece you’ll have seen recently, though the other one was a wristwatch.

An Abstract Kind Of Clock: The Chinese Remainder Clock

Hackaday likes clocks, a lot. Speaking personally, from my desk I can count at least eight clocks, of which seven are working. There’s normal quartz movement analog clocks, fun automatic wristwatches, run-of-the-mill digital clocks, a calculator watch, and a very special and very broken Darth Vader digital clock/radio combo that will get fixed one day — most likely. Every clock is great, and one of life’s great struggles is to see how many you can amass before you die. The more unique the clock is, the better, and nothing (so far) tops [Antonella Perucca]’s Chinese Remainder Clock.

Continue reading “An Abstract Kind Of Clock: The Chinese Remainder Clock”

How To Run A Clock For A Century

What’s going to keep a clock running for a century, unattended? Well, whatever’s running it will have to sip power, and it’s going to need a power source that will last a long time. [Jan Waclawek] is looking into solar power for daytime, and capacitors for nighttime, to keep his clock running for a hundred years.

This project carries on from [Jan]’s previous project which looked at what kind of power source could power the gadgets around his house for a century without needing intervention – ie., no batteries to replace, no winding etc. [Jan] whittled his choices down to a combination of solar power and polypropylene film capacitors. Once the power had been sorted, a clock was chosen in order to test the power supply. The power consumption for a clock will be low during the night – it would only need a RTC circuit keeping track of the time – so a few low-leakage capacitors can be used. When daylight returns or a light is switched on, the solar circuit would power the clock’s display.

At the moment, [Jan] has a proof of concept circuit working, using the ultra-low-power microcontroller on a STM32L476 DISCOVERY board and a few 10 μF 0805 size capacitors, when fully charged by the solar panel, the clock’s display lasts for about two minutes.

Take a look at [Jan]’s project for more details, and check out his previous project where he narrowed down the components for a hundred-year power supply. [Jan]’s prototype can be seen in action after the break. Also take a look at this master clock that signals slave clocks and runs for a year on a single AA battery.

Continue reading “How To Run A Clock For A Century”

Old LED Light Bulbs Give Up Filaments For Spider Web Clock

We love it when something common gets put to a new and unusual use, especially when it’s one of those, “Why didn’t I think of that?” situations. This digital clock with a suspended display is just such a thing.

The common items in this case were “filaments” from LED light bulbs, those meant to mimic the look of clear-glass incandescent light bulbs. [Andypugh] had been looking at them with interest for a while, and realized they were perfect as the segments for a large digital clock. The frame of the clock was formed from bent brass U-channel and mounted to an oak base via turned stanchions. The seven-segment displays were laid out in the frame and the common anodes of the LED filaments were connected together, with the cathode for each connected to a very fine wire. Each wire was directed through a random hole in the frame and channeled down into the base, to be hooked to one of the four DS8880 VFD driver chips. The anode wires form a lacy filigree behind the segments, which catch the light and make then look a little like a spider’s web. It looks great, but nicht für der gefingerpoken – the frame is at 80 VDC to drive the LED segments. The clock is synced to the UK atomic clock with a 60-kHz radio link; see the long, painful sync process in the video below.

We like the open frame look, which we’ve seen before with an equally dangerous sculptural nixie clock. And this gives us some ideas for what to do with those filament LEDs other than turning them back into a light bulb. And if [Andy] sounds familiar, it could be because he’s appeared here before. First of all resurrecting the parts bin for an entire classic motorcycle marque, and then as the designer of SMIDSY, a robot competitor in the first incarnation of the UK Robot Wars series.

Continue reading “Old LED Light Bulbs Give Up Filaments For Spider Web Clock”

Kindle Tells The Time By Quoting Literature

People love books, and if you’re anything like [tjaap]’s girlfriend, you may easily devour your eighty books and more a year. Maybe to keep better track of time during her reading sessions, her wish was to get a clock for the living room, so [tjaap] stepped up. Being a maker at heart, he decided to skip the ready-made options, and instead build one in the most fitting way imaginable: by displaying the time as literary quotes on a jailbroken Kindle.

Unlike your average word clock, [tjaap]’s literary clock displays (almost) every minute a different sentence that, in one form or another, contains the current time. Thanks to the internet, he didn’t have to compile the whole list of book quotes for each and every minute of the day by himself, but it still required some work to put it all in the form he needed. Eventually he had a script that converted each quote into an image, and a shell script on the Kindle to display them according to the time. As a bonus, the origin of the quote is displayed only optionally, turning the clock into a simple trivia quiz along the way.

It shows that themed, personalized clocks are always a great subject for a gift, just like the one made from analog meters we saw around Father’s Day.

The Nitty-Gritty Of Making A Brass Clock

Among all the timepieces that we feature here at Hackaday, surprisingly we bring you relatively few clocks. That might seem an incomprehensible statement given the plethora of, well, clocks, that appear here, but it’s one that hinges upon the type of clock. Electronic clocks of extreme skill, complexity, and beauty, yes, but traditional mechanical clocks? Not so many.

So [Thonemeister]’s wall-mounted brass alarm clock was a welcome sight on our tips line, and his write-up is a fascinating exposition of the path taken by a novice clockmaker on their first build. He starts by describing his workshop, then steps methodically through each of the constituent parts of the clock.

We see the frame, escapement mechanism, gears, and movement taking shape, and we learn something about clockmaker’s tools from the pitfalls he encountered. He was a complete lathe novice at the start of this build, and it’s fun to follow along with his learning curve. As we see thed finished clock taking shape, we even get to see the little touches like forming the hooks for the weights. He bought the bell for the clock off-the-shelf, not wishing to expend the considerable piece of brass stock it would have taken to machine it himself. But for the most part, this is an engaging scratch build you won’t want to miss.

Many of us will never make a traditional clock. But that need not stop us finding the work that goes into one an extremely fascinating read. We have more for you if this has whetted your appetite: you’ll be interested in the escapement mechanism, and if brass is a bit much, how about wood?