Mechanisms: Tension Control Bolts

If there’s an enduring image of how large steel structures used to be made, it’s probably the hot riveting process. You’ve probably seen grainy old black-and-white films of a riveting gang — universally men in bib overalls with no more safety equipment than a cigarette, heating rivets to red heat in a forge and tossing them up to the riveters with a pair of tongs. There, the rivet is caught with a metal funnel or even a gloved hand, slipped into a waiting hole in a flange connecting a beam to a column, and beaten into submission by a pair of men with pneumatic hammers.

Dirty, hot, and dangerous though the work was, hot riveted joints were a practical and proven way to join members together in steel structures, and chances are good that any commercial building that dates from before the 1960s or so has at least some riveted joints. But times change and technology marches on, and riveted joints largely fell out of fashion in the construction trades in favor of bolted connections. Riveting crews of three or more men were replaced by a single ironworker making hundreds of predictable and precisely tensioned connections, resulting in better joints at lower costs.

Bolted joints being torqued to specs with an electric wrench might not have the flair of red-hot rivets flying around the job site, but they certainly have a lot of engineering behind them. And as it turns out, the secret to turning bolting into a one-person job is mostly in the bolt itself.

Continue reading “Mechanisms: Tension Control Bolts”

Autonomous Excavator Builds Stone Wall Algorithmically

In a move that aims to further the circular economy of the construction industry, researchers at ETH Zurich have let an autonomous excavator loose on a big pile of boulders and reclaimed concrete. The goal? To build a 20 foot (6 meter) and 213 ft (65 m) long dry-stone wall as part of a park where the landscape was digitally planned, and the earth autonomously excavated.

The coolest thing about the Menzi Muck excavator is the software, which is explored in the video after the break. Thanks to a bunch of sensors, the excavator can not only draw a 3D map of the site, it can find in situ boulders dotting the landscape and incorporate them into the wall.

Machine vision allows the excavator to grab the stones and assess their size and shape, as well as approximate their weight and center of gravity.

Then, an algorithm determines the best place for each stone and places them there without using mortar or cement. Menzi Muck is capable of number-crunching 20 to 30 stones at a time, which coincidentally is about the number in one delivery.

Want to build your own excavator? Check out this finely-detailed R/C excavator for top-notch inspiration.

Continue reading “Autonomous Excavator Builds Stone Wall Algorithmically”

Hackaday Links Column Banner

Hackaday Links: September 3, 2023

Right-to-repair has been a hot-button topic lately, with everyone from consumers to farmers pretty much united behind the idea that owning an item should come with a plausible path to getting it fixed if it breaks, or more specifically, that you shouldn’t be subject to prosecution for trying to repair your widget. Not everyone likes right-to-repair, of course — plenty of big corporations want to keep you from getting up close and personal with their intellectual property. Strangely enough, their ranks are now apparently joined by the Church of Scientology, who through a media outfit in charge of the accumulated works of Church founder L. Ron Hubbard are arguing against exemptions to the Digital Millennium Copyright Act (DMCA) that make self-repair possible for certain classes of devices. They apparently want the exemption amended to not allow self-repair of any “software-powered devices that can only be purchased by someone with particular qualifications or training or that use software ‘governed by a license agreement negotiated and executed’ before purchase.

Continue reading “Hackaday Links: September 3, 2023”

A Brief History Of Drywall Or: How Drywall Came To Dominate The World Of Construction

Drywall is common and ubiquitous in commercial and residential buildings today. Many of us barely think about it until we have to repair a hole smashed in it.

However, drywall has not been around forever, and actually took many years to establish itself as a popular building material. Today, we’ll look at how it came about, and why it went on to dominate the world of construction.

Continue reading “A Brief History Of Drywall Or: How Drywall Came To Dominate The World Of Construction”

You Wouldn’t 3D Print A House, Would You?

Most houses built in the US today are platform construction: skinny two-by-fours are stacked and layered to create walls with studs. Each floor is framed on top of the other. It is fast, relatively cheap, and easy to learn how to do. However, it is not without drawbacks. Some estimates put the amount of waste generated per square foot (0.09 m2) at around 3.9 lbs (1.8 kg).

Timber framing is an older style where giant beams are used to create the structure of the house. Each timber is hand-carved and shaped, requiring skill and precision. Some cabins are still built this way because it is easy to source the timber locally and cutting into big logs is less work than cutting into lots of small logs. It’s relatively ecologically friendly, but slow and skilled-labor intensive.

We live in a world where there is a vast need for cheaper, faster, more eco-friendly housing, but finding a solution that can tick all the boxes is fiendishly difficult. Can 3D-printed housing accomplish all three of those goals? We’re not there yet, but we’re working on it.

Continue reading “You Wouldn’t 3D Print A House, Would You?”

A Great Resource For The Would-Be Pinball Machine Builder

Those of us beyond a certain age will very likely have some fond memories of many an hour spent and pocket money devoured feeding the local arcade pinball machine. At one time they seemed to be pretty much everywhere, but sadly, these days they seem to have largely fallen out of favour and are becoming more of speciality to be specifically sought out. Apart from a few random ones turning up — there’s a fun Frankenstein-themed machine in the Mary Shelley Museum in Bath, England — a trip to a local amusement arcade is often pretty disappointing, with modern arcade machines just not quite scratching that itch anymore, if you ask us. So what’s an old-school hacker to do, but learn how to build a machine from scratch, just the way we want it? A great resource for this is the excellent Pinball Makers site, which shows quite a few different platforms to build upon and a whole ton of resources and guides to help you along the way.

Continue reading “A Great Resource For The Would-Be Pinball Machine Builder”

Concrete With 3D Printed Foam Forms

The latest 3D printing application?  Forming concrete. That’s according to a team at ETH Zurich who claims that construction with foam forms cuts concrete usage up to 70%. It also offers improved insulation properties. You can see a video about the process, below.

Typical concrete work relies on a form often made with wood, steel, or plastic. That’s easy to do, but hard to make complex shapes. However, if you can create complex shapes you can easily put material where it adds strength and omit material where it doesn’t carry load. Using a robotic-arm 3D print technique, the researchers can lay out prefabricated blocks of foam that create forms with highly complex shapes. Continue reading “Concrete With 3D Printed Foam Forms”