3D Printed Hydrofoil Goes From Model Scale To Human Scale With Flight Controller

Hydrofoils have been around for several decades, but watching a craft slice through the water with almost no wake never get old. In the videos after the break, [rctestflight] showcases his ambitious project: transforming a standup paddleboard into a rideable hydrofoil with active stabilization.

Unlike conventional electric hydrofoil boards that depend on rider skill for balance, [rctestflight] aims to create a self-stabilizing system. He began by designing a small-scale model, complete with servo-controlled ailerons and elevators, dual motors for differential thrust, and a dRehmFlight flight controller. A pair of sonar sensors help the flight controller maintain constant height above the water. The wings are completely 3D printed, with integrated hinges for flight control surfaces slots for wiring and control components. It’s better suited for 3D printing than RC aircraft since it’s significantly less sensitive to weight, allowing for more structural reinforcement. The small scale tests were very successful and allowed [rctestflight] to determine that he didn’t need the vertical stabilizer and rudder.

The full-sized version features a scaled up wing, larger servos and motors attached to an 11-foot standup paddleboard — minus its rear end — mounted on commercially available e-foil booms. A foam battery box stores a hefty LiFePO4 battery, while the electronics from the smaller version are repurposed here. Despite only catching glimpses of this larger setup in action at the end of the video, it promises an excitingly smooth lake ride we would certainly like to experience.

We’ve seen several 3D printed hydrofoils around here, but this promised to be the largest successful attempt. Don’t fail us [Daniel].

Continue reading “3D Printed Hydrofoil Goes From Model Scale To Human Scale With Flight Controller”

Control Tricks For Tailsitters

An RC VTOL aircraft always makes for a compelling project, but ensuring the transition between hover and forward flight can be quite challenging. In the video after the break, [Nicholas Rehm] demystifies of the flight control algorithm required for a VTOL tailsitter.

Tailsitters are one of the simplest VTOL arrangements, the testbed here being a simple foam KF airfoil wing with two motors and two servo-controlled elevons. As with almost all his projects [Nicholas], uses of his open-source dRehmFlight flight controller to demonstrate the practical implementation of the control algorithm.

Three major factors that need to be simultaneously taken into account when transitioning a tailsitter VTOL. First off, yaw becomes roll, and vice versa. This implies that in hover mode, elevons have to move in opposite directions to control yaw; however, this same action will make it roll in forward flight. The same applies for differential thrust from motors — it controls roll in hover and yaw in forward flight. Nevertheless, this change of control scheme only works if the flight controller also alters its reference frame for “level” flight (i.e., flips forward 90°). As [Nicholas] demonstrates, failing to do so results in a quick and chaotic encounter with the ground.

With these adjustments made, the aircraft can transition to forward flight but will oscillate pitch-wise as it overcorrects while trying to maintain stable flight; this is due to PID gains – 3rd factor. The deflection required by control surfaces is much more aggressive during hover mode; thus PID gains need to be reduced during forward flight. A final improvement involves adding a brief delay when switching modes for smoother rotation.

For more interesting VTOL configurations, check out [Tom Stanton]’s RC V-22 Osprey, and this solar recharging trimotor

Continue reading “Control Tricks For Tailsitters”

Fly Like You Drive With This Flying RC Drift Car

So it’s 2023, and you really feel like we should have flying cars by now, right? Well, as long as you ignore the problem of scale presented by [Nick Rehm]’s flying RC drift car, we pretty much do.

At first glance, [Nick]’s latest build looks pretty much like your typical quadcopter. But the design has subtle differences that make it more like a car without wheels. The main difference is the pusher prop at the aft, which provides forward thrust without having to pitch the entire craft. Other subtle clues include the belly-mounted lidar and nose-mounted FPV camera, although those aren’t exactly unknown on standard UAVs.

The big giveaway, though, is the RC car-style remote used to fly the drone. Rather than use the standard two-joystick remote, [Nick] rejiggered his dRehmFlight open-source flight control software to make operating the drone less like flying and more like driving. The lidar is used to relieve the operator of the burden of altitude keeping by holding the drone at about a meter or so off the deck. And the video below shows it doing a really good job of it, for the most part — with anything as complicated as the multiple control loops needed to keep this thing in the air, it’s easy for a sudden input to confuse things.

We have to admit that [Nick]’s creation looks like a lot of fun to fly, or drive — whichever way you want to look at it. Either way, we like the simplification of the flight control system and translating the driving metaphor into flying — it seems like that’ll be something we need if we’re ever to have full-size flying cars.

Continue reading “Fly Like You Drive With This Flying RC Drift Car”

Bicopter Phone Case Might Be Hard To Pocket, But Delivers Autonomous Selfies

Remember that “PhoneDrone” scam from a while back? With two tiny motors and props that could barely lift a microdrone, it was pretty clearly a fake, but that doesn’t mean it wasn’t a pretty good idea. Good enough, in fact, that [Nick Rehm] came up with his own version of the flying phone case, which actually works pretty well.

In the debunking collaboration between [Mark Rober], [Peter Sripol], and the indispensable [Captain Disillusion], you’ll no doubt recall that after showing that the original video was just a CGI scam, they went on to build exactly what the video purported to do. But alas, the flying phone they came up with was manually controlled. While cool enough, [Nick Rehm], creator of dRehmFlight, can’t see such a thing without wanting to make it autonomous.

To that end, [Nick] came up with the DroneCase — a bicopter design that allows the phone to hang vertically. The two rotors are on a common axis and can swivel back and forth under control of two separate micro-servos; the combination of tilt rotors and differential thrust gives the craft full aerodynamic control. A modified version of dRehmFlight runs on a Teensy, while an IMU, a lidar module, and a PX4 optical flow sensor round out the sensor suite. The lidar and flow sensor both point down; the lidar is used to sense altitude, while the flow sensor, which is basically just the guts from an optical mouse, watches for translation in the X- and Y-axes.

After a substantial amount of tuning and tweaking, the DroneCase was ready for field tests. Check out the video below for the results. It’s actually quite stable, at least as long as the batteries last. It may not be as flexible as a legit drone, but then again it probably costs a lot less, and does the one thing it does quite well without any inputs from the user. Seems like a solid win to us.

Continue reading “Bicopter Phone Case Might Be Hard To Pocket, But Delivers Autonomous Selfies”

Optimising An RC Tilt-Rotor VTOL

There are a variety of possible motor configurations to choose from when building a fixed-wing VTOL drone, but few take the twin-motor tilt-rotor approach used by the V-22 Osprey. However, it remains a popular DIY drone for fans of the military aircraft, like [Tom Stanton]. He recently built his 5th tilt-rotor VTOL and gave an excellent look at the development process. Video after the break.

The key components of any small-scale tilt-rotor are the tilt mechanism and the flight controller. [Tom]’s tilt mechanism uses a high-speed, high-torque servo that rotates the motor mount via 3D printed gear mechanism. This means the servo doesn’t need to bear the full load of the motor, and the gearing can be optimized for torque and speed. [Tom] also used the tilting motors for yaw and roll control during forward flight, which allows him to eliminate all the other conventional control surfaces except for the elevator.
Continue reading “Optimising An RC Tilt-Rotor VTOL”

Turn Drone Into A Large Propeller To Increase Hover Efficiency

Multirotor drones are significantly more popular than conventional helicopter designs for many reasons, which do not include efficiency. Making use of the aerodynamic effects behind this, [Nicholas Rehm] was able to significantly increase the efficiency of his experimental tricopter by turning it into one large spinning propeller.

Since aerodynamic drag is proportional to velocity, a small, high-RPM propeller will require more power to produce the same thrust as a large, low-RPM propeller. With this in mind, [Nicholas] built a tricopter that can rotate all three long arms together using a single servo, giving it very aggressive yaw control. By attaching a wing to each of the arms, it becomes a large variable pitch propeller powered by tip thrusters.Power draw graph

To measure the efficiency of the craft, a small lidar sensor was added to allow accurate PID altitude control. While keeping the drone at a constant altitude a few feet off the ground, [Nicholas] measured the power draw of the motors in a hover, and then let the drone spin around its yaw axis up to almost 5 rev/s.

At a spin rate of 4 rev/s, the power draw of the motors was reduced by more than 60%. Even compared to the drone without the added weight of the wings, it still used 50% less power to maintain altitude.

Since [Nicholas] hadn’t yet implemented horizontal position control while spinning, the length of each test run was limited by the wind drift. He plans to solve this, and also do some testing of the drone in horizontal flight, where the added airfoils will also increase efficiency.

We’ve featured a few of [Nicholas]’ flying machines here on Hackaday, including a foam F-35 VTOL and a cyclocopter. Most of his aircraft run his open source dRehmFlight flight stabilization, created specifically for hacking.

Continue reading “Turn Drone Into A Large Propeller To Increase Hover Efficiency”

Cyclocopter Flies With Eight Spinning Horizontal Wings

For conventional vertical takeoff and landing rotors on vertical shafts are the most common solution, as seen in helicopters and multirotors. A much less popular solution is the cyclocopter, which consists of a pair of rotors spinning around a horizontal shaft with horizontal blades. [Nicholas Rehm] built a remote-controlled cyclocopter as part of a research project and gave us an excellent overview of this unique craft in the video after the break.

Also known as the cyclogyro, the idea is not new, with the first one constructed in 1909. The first flight was a long time later in the 1930s, but it was quickly discovered that they were too unstable to be flown manually by a human, so the idea was shelved. Thanks to modern microcontrollers, researchers have recently been able to build small-scale versions, like the tiny example from the University of Texas.

Lift is produced using four or more airfoils on each of the two cycloidal rotors. At the top and bottom of rotation they have a positive angle of attack, with a neutral angle on the sides. The blades’ angle of attack can be adjusted to produce forward or reverse thrust. An additional motor with a conventional propeller is mounted on the nose to counteract the torque created by the main rotors, similar to a helicopter’s tail rotor.

Unlike multirotors, cyclocopters don’t need to pitch forward to move horizontally. The blades also don’t need to be tapered and twisted like a conventional rotorcraft, since the relative airflow velocity remains constant along the length of the blade. However, they have some significant downsides that will likely prevent them from moving beyond the experimental stage for the foreseeable future. The rotors are quite complex mechanically and need to be very lightweight since the design doesn’t lend itself to great structural strength. This was demonstrated by [Nicholas] when a minor crash snapped one of the rotor arms. However, it is an excellent demonstration of the adaptability of [Nicholas]’ open-source dRehmFlight flight controller, which he has also used to fly a VTOL F-35 and belly-flopping starship.

Would you be surprised that this isn’t our first cyclocopter hack?
Continue reading “Cyclocopter Flies With Eight Spinning Horizontal Wings”