Flying a drone usually leads to–sooner or later–crashing a drone. If you are lucky, you’ll see where it crashes and it won’t be out of reach. If you aren’t lucky, you’ll know where it is, but it will be too high to easily reach. The worst case is when it just falls out of the sky and you aren’t entirely sure where. [Just4funmedia] faced this problem and decided to use some piezo buzzers and an Arduino to solve it.
Yeah, yeah, we know. You don’t really need an Arduino to do this, although it does make it easy to add some flexibility. You can pick two tones that are easy to hear and turn on the buzzers with a spare channel or sense a loss of signal or power.
20 students of the Eindhoven University of Technology (TU/e) in the Netherlands share one vision of the future: the fully domesticated drone pet – a flying friend that helps you whenever you need it and in general, is very, very cute. Their drone “Blue Jay” is packed with sensors, has a strong claw for grabbing and carrying cargo, navigates autonomously indoors, and interacts with humans at eye level.
While studying failure modes for quadcopters, and how to get them safely to the ground with less than a full quad of propellers, a group of researchers at the Institute for Dynamic Systems and Control at ETH Zurich came up with a great idea: a mode of flight that’s like the controlled spinning descent of a maple seed.
The Monospinner runs on the absolute minimum number of moving parts. Namely, one. Even a normal helicopter has a swash plate for adjustable blade pitch, and a tail rotor to keep it from spinning. Give up the idea that you want to keep it from spinning, and you can achieve controlled flight with a lot less. Well, one motor and a whole lot of math and simulation.
The Monospinner is carefully weighted so that it’s as stable as possible while spinning, but so far it’s unable to spin itself up from a standstill. In initial tests, they attached it to a pivot to help. The best part of the video (below) is when the researcher throws it, spinning, into the air and it eventually stabilizes. Very cool.
The mass media are funny in the way they deal with new technology. First it’s all “Wow, that’s Cool!”, then it’s “Ooh, that’s scary”, and finally it’s “BURN THE WITCH!”. Then a year or so later it’s part of normal life and they treat it as such. We’ve seen the same pattern repeated time and time again over the years.
Seasoned readers may remember silly stories in the papers claiming that the Soviets could somehow use the technology in Western 8-bit home computers for nefarious purposes, since then a myriad breathless exclusives have predicted a youth meltdown which never materialised as the inevitable result of computer gaming, and more recently groundless panics have erupted over 3D printing of gun parts. There might be a British flavour to the examples in this piece because that’s where it is being written, but it’s a universal phenomenon wherever in the world technologically clueless journalists are required to fill column inches on technical stories.
The latest piece of technology to feel the heat in this way is the multirotor. Popularly referred to as the drone, you will probably be most familiar with them as model-sized aircraft usually with four rotors. We have been fed a continuous stream of stories involving tales of near-misses between commercial aircraft and drones, and there is a subtext in the air that Something Must Be Done.
Are multirotors unfairly being given bad press? It certainly seems that way as the common thread among all the stories is a complete and utter lack of proof. But before we rush to their defence it’s worth taking a look at the recent stories and examining their credibility. After all if there really are a set of irresponsible owners flying into commercial aircraft then they should rightly be bought to book and it would do us no favours to defend them. So let’s examine each of those incident reports from that BBC story.
We’re not sure what FESTO is advertising with their odd flying beach ball. Amongst inspirational music it gently places its translucent appendage over a water bottle and then engulfs it with an unsettling plastic sound. With a high pitched whine it hovers away with its prey and deposits it in the hand of a thirsty business man, perhaps as a misguided nurturing instinct.
Despite discovering a new uncanny valley, the robot is pretty cool. It appears to a be a hybrid airship/helicopter on a small-scale. The balloon either zeros out the weight of the robot or provides slightly more lift. It’s up to the propellers to provide the rest.
We like the carbon fiber truss around the drone. It’s a really slick build with barely an untamed wire. This seems like a much safer design than a quadcopter for indoor flying. If its end effector wasn’t so creepy it would be even cooler. Video after the break.
Previously man was limited in his ability to fish the waters of this world by the power of his arm or his ability to procure the services of a boat. Now, as long as man is willing to risk a thousand dollar drone set-up, he can descend upon unsuspecting fish with robotic precision. It is very unfair, and awesome.
The concept is simple. Buy one of those drones every upper middle class teenager seems to get for Christmas. Attach a streaming camera set-up to it. Next, rig it up so that it can fly the fishing line from the rod out, but when the fish bites the line can easily detach. Finally, attach a friend to the controls of the fishing rod.
After that it’s like shooting fish in an ocean. Fly the drone around, pulling the line behind you, until you see a school of fish. Next, dangle the bait in the center of the school. Inevitably one will strike, the line will detach, and it’s up to your friend to reel in your catch. Either that or a bunch of tuna will wreck your drone and you’ll get to watch a livestream of a thousand dollars sink to the ocean floor. Video after the break.
[luca] has always wanted a flying robot, but despite the recent popularity of quadcopters and drones [luca] has never seen a drone that is truly autonomous. Although sometimes billed as autonomous, quadcopters and fixed wing aircraft have always had someone holding a remote, had to stay in a controlled environment, or had some off-board vision system.
Since [luca] is building a coaxial copter – something that looks like a ducted fan with a few vanes at the bottom – there will be control issues. Normal helicopters use the pitch of the blades and the torque produced by the tail rotor to keep flying straight. A quadcopter uses two pairs of motors spinning in opposite directions to stay level. With just two rotors mounted on top of each other, you would think [luca]’s coaxial copter is an intractable problem. Not so; there are bizarre control systems for this type of flying machine that make it as nimble in the sky as any other helicopter.
The design of this flying robot is a bit unlike anything on the market. It looks like a flying ducted fan, with a few electronics strapped to the bottom. It’s big, but also has the minimum number of rotors, to have the highest power density possible with current technology. With a few calculations, [luca] predicted this robot will be able to hoist an IMU, GPS, ultrasonic range finder, optical flow camera, and a LIDAR module in the air for about fifty minutes. That’s a remarkably long flight time for something that hovers, and we can’t wait to see how [luca]’s build turns out.