The J1772 Hydra Helps You Charge Two EVs At Once

There are plenty of electric vehicle (EV) chargers out there that are underutilized. This is particularly common where older EVs are involved, where the cars may only be able to charge at a few kW despite the charger being capable of delivering more. [Nick Sayer] regularly found 6.6 kW chargers being used by vehicles that could only draw down 3.3 kW at his work. Thus, he built the J1772 Hydra as a nifty double-adapter to charge two cars at once.

The Hydra comes in two versions. One is a “splitter,” which is designed to be plugged into an existing J1772 AC charger. The other is a version designed for permanent installation to an AC power supply as an EV charger in its own right. Either way, both versions of the Hydra work the same way. In “shared” mode, the Hydra splits the available AC power equally between both cars connected to the charger. When one completes, the other gets full power. Alternatively, it can be set up in “sequential” mode, allowing one car to first charge, then the other. This is great when you have two cars to charge overnight and don’t want to wake up to shift the plugs around.

It’s a neat hack that could be useful if you’re running older EVs that rely on slower AC charging. We’ve seen other DIY EV chargers before, too. Expect hacking in these areas to become more commonplace as EVs grow in popularity.

This Electric Outboard Conversion Makes For A Quiet Day On The Water

Nothing beats a day on the lake in a little boat with an outboard motor putt-putting along behind you. It’s great fun, if perhaps a little noisy with all that putting going on. And maybe that oily sheen on the water in your wake is not so nice. it could be that the fish are a little annoyed with your putting, too. Come to think of it, outboard motors are a bit of a problem.

Fortunately there’s a better way, like converting an old outboard motor to electric. It comes to us by way of [Anton], who happened upon the perfect donor platform — a 5-hp outboard by Crescent, sporting a glorious 1970s color scheme and a motor housing shell perfect for modding. He started by ripping the old engine and drivetrain out of the housing to make room for the BLDC motor and its driver. The motor was a project in itself; [Anton] rewound the original stator with much thicker wire and changed the coil configuration to milk as much torque as possible out of it. What started as a 180-kv motor ended up at 77 kv with much more copper and new Hall sensors for the controller. He also put a ton of effort into waterproofing the motor with epoxy resin. With a 3D-printed prop and a streamlined fairing, the new motor looks quite at home on the outboard. In fact, the whole thing barely looks customized at all — the speed control is even right on the tiller where you’d expect it.

The video below shows the build and a test run, plus an analysis of the problems encountered, chief of which is water intrusion. But as [Anton] rightly points out, that’s easily solved by reusing the original driveshaft and mounting the motor above the waterline, like this. Still, we like the look of this, and the idea of knocking around on the water nearly silently seems wonderful.

Continue reading “This Electric Outboard Conversion Makes For A Quiet Day On The Water”

EV Chargers Could Be A Serious Target For Hackers

Computers! They’re in everything these days. Everything from thermostats to fridges and even window blinds are now on the Internet, and that makes them all ripe for hacking.

Electric vehicle chargers are becoming a part of regular life. They too are connected devices, and thus pose a security risk if not designed and maintained properly. As with so many other devices on the Internet of Things, the truth is anything but. 

Continue reading “EV Chargers Could Be A Serious Target For Hackers”

Reverse Engineering Reveals EV Charger Has A Sense Of Security

As more and more electric vehicles penetrate the market, there’s going to have to be a proportional rise in the number of charging stations that are built into parking garages, apartment complexes, and even private homes. And the more that happens, the more chargers we’re going to start seeing where security is at best an afterthought in their design.

But as this EV charger teardown and reverse engineering shows, it doesn’t necessarily have to be that way. The charger is a Zaptec Pro station that can do up to 22 kW, and the analysis was done by [Harrison Sand] and [Andreas Claesson]. These are just the kinds of chargers that will likely be widely installed over the next decade, and there’s surprisingly little to them. [Harrison] and [Andreas] found a pair of PCBs, one for the power electronics and one for the control circuits. The latter supports a number of connectivity options, like 4G, WiFi, and Bluetooth, plus some RFID and powerline communications. There are two microcontrollers, a PIC and an ARM Cortex-A7.

Despite the ARM chip, the board seemed to lack an obvious JTAG port, and while some unpopulated pads did end up having a UART line, there was no shell access possible. An on-board micro SD card slot seemed an obvious target for attack, and some of the Linux images they tried yielded at least a partial boot-up, but without knowing the specific hardware configuration on the board, that’s just shooting in the dark. That’s when the NAND flash chip was popped off the board to dump the firmware, which allowed them to extract the devicetree and build a custom bootloader to finally own root.

The article has a lot of fascinating details on the exploit and what they discovered after getting in, like the fact that even if you had the factory-set Bluetooth PIN, you wouldn’t be able to get free charging. So overall, a pretty good security setup, even if they were able to get in by dumping the firmware. This all reminds us a little of the smart meter reverse engineering our friend [Hash] has been doing, in terms of both methodology and results.

Thanks to [Thinkerer] for the tip.

Mining And Refining: Cobalt, The Unfortunately Necessary Metal

The story of humankind is largely a tale of conflict, often brought about by the uneven distribution of resources. For as long as we’ve been down out of the trees, and probably considerably before that too, our ancestors have been struggling to get what they need to survive, as often as not at the expense of another, more fortunate tribe. Food, water, land, it doesn’t matter; if They have it and We don’t, chances are good that there’s going to be a fight.

Few resources are as unevenly distributed across our planet as cobalt is. The metal makes up only a fraction of a percent of the Earth’s crust, and commercially significant concentrations are few and far between, enough so that those who have some often end up at odds with those who need it. And need it we do; what started in antiquity as mainly a rich blue pigment for glass and ceramics has become essential for important industrial alloys, high-power magnets, and the anodes of lithium batteries, among other uses.

Getting access to our limited supply of cobalt and refining it into a useful metal isn’t a trivial process, and unfortunately its outsized importance to technological society forces it into a geopolitical role that has done a lot to add to human misery. Luckily, market forces and new technology are making once-marginal sources viable, which just may help us get the cobalt we need without all the conflict.

Continue reading “Mining And Refining: Cobalt, The Unfortunately Necessary Metal”

Converting An Old ATV To Electric Drive

[RCLifeOn] happened upon an old petrol-powered ATV that had seen better days. He decided it was the perfect candidate for a conversion to electric drive.

First up, the chassis was stripped back and cleaned, before being given a fresh coat of paint. It then got fresh valve stems for the tires and was ready for its drivetrain conversion.

The motor of choice is a brushless type, rated for 42 kW at 120 V. [RCLifeOn] doesn’t have batteries capable of maxing out those specs, yet, but carried on with the build. The motor was mounted on the chassis, and a 3D printed hub was installed to get the sprocket on the end of the motor.

A stress test uphill killed the speed controller. This was not unexpected, as it was a cheap unit severely undersized for the application.

The first drive was rough and ready, as the speed controller wasn’t sensored, the gearing wasn’t quite right, and the chain wasn’t very tight. However, it did successfully make it around the grass, slowly. Further improvements then included a water cooling circuit for the speed controller and the addition of a battery compartment. That wasn’t enough to stop the speed controller bursting into flames during a difficult uphill climb, though.

Fundamentally, though, the project shows promise. Bigger batteries, a sensored speed controller, and appropriate gearing should make it a quick beast. 42 kW of power is a good amount for a light ATV, plus there’s the benefit of instant-on torque from an electric motor.

We’ve seen [RCLifeOn] tackle some high-powered electric builds before, like his impressive powered surfboard.  With the right parts, we’re sure he’ll have this thing ripping about at pace before long!

Continue reading “Converting An Old ATV To Electric Drive”

We Can’t Switch To Electric Cars Until We Get More Copper

Reducing emissions from human activity requires a great deal of effort in many different sectors. When it comes to land transport, the idea is generally to eliminate vehicles powered by combustion engines and replace them with electric vehicles instead. At a glance, the job is simple enough. We know how to build EVs, and the technology is getting to the point where they’re capable of replacing traditional vehicles in many applications.

Of course, the reality is not so simple. To understand the problem of converting transportation to electric drive en masse, you have to take a look at the big numbers. Focus in on the metrics of copper, and you’ll find the story is a concerning one. 

Continue reading “We Can’t Switch To Electric Cars Until We Get More Copper”