Fablab Saigon Celebrates A Belated Arduino Day

Okay, we’ve just left May and stepped into June, why are we talking about Arduino Day — traditionally a March 16th event where makers congregate and share projects? I live in Ho Chi Minh City, and the event tends to take place in mid-May, but the enthusiasm and collaborative spirit are just as strong. Organized by the awesome local maker group Fablab Saigon with the venue provided by Intek Institute, there were some neat projects on display along with some talks from local companies.

The first thing that struck me about the event was how young the maker movement is here – most attendees were still in high school or early university. By contrast, I was 23 when I first learned to use AVR microcontrollers with assembly language (by the time Arduino started to get traction the boat effectively missed me). I couldn’t help but feel like a bit of a relic, at least until we all started talking excitedly about robots (I had brought a couple). It seems that geeking out about electronics is the great equalizer which knows no age limits.

Continue reading “Fablab Saigon Celebrates A Belated Arduino Day”

Fail Of The Week: How Not To Do IoT Security

There are a lot of bad days at work. Often it’s the last day, especially when it’s unexpected. For the particularly unlucky, the first day on a new job could be a bad day. But the day you find an unknown wireless device attached to the underside of your desk has to rank up there as a bad day, or at least one that raises a lot of serious questions.

As alarming as finding such a device would be, and for as poor as the chain of decisions leading these devices being attached to the workstations of the employees at a mercifully unnamed company, that’s not the story that [Erich Styger] seeks to tell. Rather, this is a lesson in teardown skills – for few among us would not channel the anger of finding something like this is into a constructively destructive teardown – and an investigation into the complete lack of security consideration most IoT devices seem to be fielded with these days.

Most of us would recognize the device as some kind of connected occupancy sensor; the PIR lens being the dead giveaway there. Its location under a single person’s desk makes it pretty clear who’s being monitored.

The teardown revealed that the guts of the sensor included a LoRa module, microcontroller, a humidity/temperature sensor, and oddly for a device apparently designed to stick in one place with magnets, an accelerometer. Gaining access to the inner workings was easy through the UART on the microcontroller, and through the debug connectors and JTAG header on the PCB. Everything was laid out for all to see – no firmware protection, API keys in plain text, and trivially easy to reflash. The potential for low-effort malfeasance by a compromised device designed to live under a desk boggles the mind.

The whole article is worth a read, if only as a lesson in how not to do security on IoT devices. We know that IoT security is hard, but that doesn’t make it optional if you’re deploying out in the big wide world. And there’s probably a lot to learn about properly handling an enterprise rollout too. Spoiler alert: not like this.

IoT For Agriculture Hack Chat With Akiba

Join us Wednesday at 5:00 PM Pacific time for the IoT and Agriculture Hack Chat with Akiba!

Note the different time than our usual Hack Chat slot! Akiba willi be joining us from Japan.

No matter what your feelings are about the current state of the world, you can’t escape the fact that 7.7 billion humans need to be fed every day. That means a lot of crops to grow and harvest and a lot of animals to take care of and bring to market. And like anything else, technology can make that job easier and more productive.

join-hack-chatTo test concepts at the interface between technology and agriculture, Akiba has developed HackerFarm, a combination of homestead, hackerspace, and small farm in Japan. It’s a place where hackers with agriculture-related projects can come to test ideas and collaborate with other people trying to solve the problems of a hungry world by experimenting on an approachable scale with open-source technology.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, May 15 at 5:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

A Simple Programmable Light Controller

Everything’s internet connected these days, garage doors, baby monitors, and the kitchen sink are all hooked up. There are benefits to having everything online, but also several pitfalls. Maintaining security on a home network is an ongoing job, made more difficult by the number of devices that must be kept track of. Sometimes all the hassle isn’t worth it, and you just want a non-connected solution. [Dilshan] found himself in just that camp, and built a simple programmable light controller that doesn’t connect to the Internet. 

At the core of the project is an ATMEGA8 microcontroller, which is cheap, readily available, and can do the job. It’s combined with a DS1307 real time clock IC to keep track of time. The circuit is designed for 24V power, to allow it to be run from the same supply as the LED light modules it is designed to control.

The design was initially prototyped with through-hole parts on the breadboard, with the final design being built with surface mount parts on a custom PCB. Light is courtesy of a 7W warm white LED module. 3 push buttons and a 4-digit, 7-segment display act as the user interface, with an LDR to allow the light to also react to its surroundings.

It’s a build that goes against current trends, lacking WiFi connectivity, Twitter functionality, or cloud-based logging. It goes to show that the right solution isn’t always putting everything online. Sometimes the old methods are enough to do the job, and do it well.

Of course, if you’re still itching for a packet data fix, here’s how to blink an LED over the Internet.

Python And The Internet Of Things Hack Chat

Join us Wednesday at noon Pacific time for the Python and the Internet of Things Hack Chat!

Opinions differ about what the most-used programming language in right now is, but it’s hard to deny both the popularity and versatility of Python. In the nearly 30 years since it was invented it has grown from niche language to full-blown development environment that seems to be everywhere these days. That includes our beloved microcontrollers now with MicroPython, and Adafruit’s CircuitPython, greatly lowering the bar for entry-level hackers and simplifying and speeding development for old hands and providing a path to a Python-powered Internet of Things.

The CircuitPython team from Adafruit Industries – Dan Halbert​, Kattni Rembor​, Limor “Ladyada” Fried​, Phillip Torrone​, and Scott Shawcroft – will drop by the Hack Chat to answer all your questions about Python and the IoT. Join us as we discuss:

  • How CircuitPython came to be;
  • The range of IoT products that support Python;
  • Getting started with Python on IoT devices; and
  • What’s on the horizon for a Python-powered IoT?

And as extra enticement, we’ll be giving away five free one-year passes to ​Adafruit.io​! We’ll draw five names at random from the list of Hack Chat attendees. Stop by for a chance to win. And, the Adafruit team will be streaming video live during the Hack Chat as well.

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Python and the Internet of Things Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 3, at noon, Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Want a quick peek at what’s possible with CircuitPython? Check out this PyPortal event countdown timer that just happens to be counting down the hours till the next Hack Chat.

WiFi Your Door Lock With An ESP

The Internet of Things is upon us, and with that comes a deluge of smart cameras, smart home monitors, and smart home locks. There actually aren’t many smarts in these smart conveniences, and you can easily build your own. That’s what [MakerMan] did with some off-the-shelf parts and just a little bit of code. Now he can open his door with WiFi, and it’s a nice clean build.

The build process began by first removing the existing barrel bolt on the door. This was replaced by a deadbolt that also had some really neat solenoids inside for remote activation. This was mounted to the door in a way that the door could lock, with a minimal amount of damage from some skillful hacksaw work. The only thing left to do after this was add some electronics and brains to the lock.

For this, [MakerMan] added a button and LED to the outside of the door. Some of these wires were fed into the lock mechanism, with a few more run over to a project enclosure mounted next to a power outlet. The project enclosure holds an ESP-8266, power regulator, and relay board, and the ESP is running code that instantiates a web server that will unlock the door with a few clicks on a web page.

Sure, it’s probably not the most secure lock on the planet, and the 5V linear regulator is held on to the relay board with hot glue, but this is an exceptionally well-documented project, and all the code is available in an archive.

Continue reading “WiFi Your Door Lock With An ESP”

The Joy Of Properly Designed Embedded Systems

The ages-old dream of home automation has never been nearer to reality. Creating an Internet of Things device or even a building-wide collection of networked embedded devices is “easy” thanks to cheap building blocks like the ESP8266 WiFi-enabled microcontroller. Yet for any sizable project, it really helps to have a plan before getting started. But even more importantly, if your plan is subject to change as you work along, it is important to plan for flexibility. Practically, this is going to mean expansion headers and over-the-air (OTA) firmware upgrades are a must.

I’d like to illustrate this using a project I got involved in a few years ago, called BMaC, which grew in complexity and scope practically every month. This had us scrambling to keep up with the changes, while teaching us valuable lessons about how to save time and money by having an adaptable system architecture.

Continue reading “The Joy Of Properly Designed Embedded Systems”