Give Your Microscope Polarized $5 Shades To Fight Glare

Who doesn’t know the problem of glare when trying to ogle a PCB underneath a microscope of some description? Even with a ring light, you find yourself struggling to make out fine detail such as laser-etched markings in ICs, since the scattered light turns everything into a hazy mess. That’s where a simple sheet of linear polarizer film can do wonders, as demonstrated by [northwestrepair] in a recent video.

Simply get one of these ubiquitous films from your favorite purveyor of goods, or from a junked LCD screen or similar, and grab a pair of scissors or cutting implements. The basic idea is to put this linear polarizer film on both the light source as well as on your microscope’s lens(es), so that manipulating the orientation of either to align the polarization will make the glare vanish.

This is somewhat similar to the use of polarizing sunshades, only here you also produce specifically the polarized light that will be let through, giving you excellent control over what you see. As demonstrated in the video, simply rotating the ring light with the polarizer attached gives wildly different results, ranging from glare-central to a darkened-but-clear picture view of an IC’s markings.

How to adapt this method to your particular microscope is left as your daily arts and crafts exercise. You may also want to tweak your lighting setup to alter the angle and intensity, as there’s rarely a single silver bullet for the ideal setup.

Just the thing for that shiny new microscope under the Christmas tree. Don’t have a ring light? Build one.

Continue reading “Give Your Microscope Polarized $5 Shades To Fight Glare”

How A Failed Video Format Spawned A New Kind Of Microscope

The video cassette tape was really the first successful home video format; discs just couldn’t compete back in the early days. That’s not to say nobody tried, however, with RCA’s VideoDisc a valiant effort that ultimately fell flat on its face. However, the forgotten format did have one benefit, in that it led to the development of an entirely new kind of microscope, as explained by IEEE Spectrum.

The full story is well worth the read; the short version is that it all comes down to capacitance. RCA’s VideoDisc format was unique in that it didn’t use reflective surfaces or magnetic states to represent data. Instead, the data was effectively stored as capacitance changes. As a conductive stylus rode through an undulating groove in a carbon-impregnated PVC disc, the capacitance between the stylus and the disc changed. This capacitance was effectively placed into a resonant circuit, where it would alter the frequency over time, delivering an FM signal that could be decoded into video and audio by the VideoDisc player.

The VideoDisc had a capacitance sensor that could detect such fine changes in capacitance, that it led to the development of the Scanning Capacitance Microscope (SCM). The same techniques used to read and inspect VideoDiscs for quality control could be put to good use in the field of semiconductors. The sensors were able to be used to detect tiny changes in capacitance from dopants in a semiconductor sample, and the SCM soon became an important tool in the industry.

It’s perhaps a more inspiring discovery than when cheeky troublemakers figured out you could use BluRay diodes to pop balloons. Still fun, though. An advertisement for the RCA VideoDisc is your video after the break.

Continue reading “How A Failed Video Format Spawned A New Kind Of Microscope”

19th Century Photography In Extreme Miniature

Ever since the invention of the microscope, humanity has gained access to the world of the incredibly small. Scientists discovered that creatures never known to exist before are alive in an uncountable number in spaces as small as the head of a pin. But the microscope unlocked some interesting forms of art as well. Not only could people view and photograph small objects with them, but in the mid-nineteenth century, various artists and scientists used them to shrink photographs themselves down into the world of the microscopic. This article goes into depth on how one man from this era invented the art form known as microphotography.

Compared to photomicroscopy, which uses a microscope or other similar optical device to take normal-sized photographs of incredibly small things, microphotography takes the reverse approach of taking pictures of normal-sized things and shrinking them down to small sizes. [John Benjamin Dancer] was the inventor of this method, which used optics to shrink an image to a small size. The pictures were developed onto photosensitive media just like normal-sized photographs. Not only were these unique pieces of art, which developed — no pun intended — into a large fad, but they also had plenty of other uses as well. For example, since the photographs weren’t at all obvious without a microscope, they found plenty of uses in espionage and erotica.

Although the uses for microphotography have declined in today’s digital world, there are still plenty of unique pieces of art around with these minuscule photographs, as well as a bustling collector culture around preserving some of the antique and historical microphotographs from before the turn of the century. There is also similar technology, like microfilm and microfiche, that were generally used to preserve data instead of creating art, although plenty of these are being converted to digital information storage now.

The Make-roscope

Normal people binge-scroll social media. Hackaday writers tend to pore through online tech news and shopping sites incessantly. The problem with the shopping sites is that you wind up buying things, and then you have even more projects you don’t have time to do. That’s how I found the MAKE-roscope, an accessory aimed at kids that turns a cell phone into a microscope. While it was clearly trying to appeal to kids, I’ve had some kids’ microscopes that were actually useful, and for $20, I decided to see what it was about. If nothing else, the name made it appealing.

My goal was to see if it would be worth having for the kinds of things we do. Turns out, I should have read more closely. It isn’t really going to help you with your next PCB or to read that tiny print on an SMD part. But it is interesting, and — depending on your interests — you might enjoy having one. The material claims the scope can magnify from 125x to 400x.

What Is It?

The whole thing is in an unassuming Altoids-like tin. Inside the box are mostly accessories you may or may not need, like a lens cloth, a keychain, plastic pipettes, and the like. There are only three really interesting things: A strip of silicone with a glass ball in it, and a slide container with five glass slides, three of which have something already on them. There’s also a spare glass ball (the lens).

What I didn’t find in my box were cover slips, any way to prepare specimens, and — perhaps most importantly — clear instructions. There are some tiny instructions on the back of the tin and on the lens cloth paper. There is also a QR code, but to really get going, I had to watch a video (embedded below).

Continue reading “The Make-roscope”

Make Your Cheap Thermal Camera Into A Microscope

[Project 326] has a cheap thermal camera that plugs into a smart phone. Sure they are handy, but what if you could hack one into a microscope with a resolution measured in microns? It is easier than you might think and you can see how in the video below.

Of course, microscopes need lenses, but glass doesn’t usually pass IR very well. This calls for lenses made of exotic material like germanium. One germanium lens gives some magnification. However, using a 3D printed holder, three lenses are in play, and the results are impressive.

The resolution is good enough to see the turns of wire in an incandescent light bulb. A decapsulated power transistor was interesting to view, too. Imaging heat at that much resolution gives you a lot of information. At the end, he teases that using first surface mirrors, he may show how to build an IR telescope as well.

Presumably, this will work with just about any IR camera if you adapt the lens holder. The unit in the video is a UNI-T UTi-260M. So when he says he spent about $35 on the build, that’s not including the $400 or so camera module.

IR imaging can pull off some amazing tricks, like looking inside an IC. If the thermal camera used in the video isn’t to your liking, there are plenty of others out there.

Continue reading “Make Your Cheap Thermal Camera Into A Microscope”

Soldering, Up Close And Personal

A word of warning before watching this very cool video on soldering: it may make you greatly desire what appears to be a very, very expensive microscope. You’ve been warned.

Granted, most people don’t really need to get this up close and personal with their soldering, but as [Robert Feranec] points out, a close look at what’s going on when the solder melts and the flux flows can be a real eye-opener. The video starts with what might be the most esoteric soldering situation — a ball-grid array (BGA) chip. It also happens to be one of the hardest techniques to assess visually, both during reflow and afterward to check the quality of your work. While the microscope [Robert] uses, a Keyence VHX-7000 series digital scope, allows the objective to swivel around and over the subject in multiple axes and keep track of where it is while doing it, it falls short of being the X-ray vision you’d need to see much beyond the outermost rows of balls. But, being able to look in at an angle is a huge benefit, one that allows us a glimpse of the reflow process.

More after the break

Continue reading “Soldering, Up Close And Personal”

Hands On: AD409-Max Microscope

It used to be that only the most well-equipped home electronics lab had a microscope. However, with SMD parts getting smaller and smaller, some kind of microscope is almost a necessity.

Luckily, you can get USB microscopes for a song now. If you’re willing to spend a little more, you can get even get microscopes that have little LCD screens. However, there are some problems with the cheaper end of these microscopes.

Many of them have small and wobbly stands that aren’t very practical. Some don’t leave you much room to get a soldering iron in between the lens and the part. Worse still, many cheap microscopes have trouble staying still when you have to push buttons or otherwise make adjustments to the device.

It seems like every time a new generation of microscopes aimed at the electronics market arrives on the scene, many of the earlier flaws get taken care of. That’s certainly the case with the Andonstar AD409-Max.

Continue reading “Hands On: AD409-Max Microscope”