AMSAT-OSCAR 7: The Ham Satellite That Refused To Die

When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, failed open — thus allowing the satellite to run (intermittently) off its solar panels.

In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).

The battery is made up of multiple individual cells.

The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.

Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.

Continue reading “AMSAT-OSCAR 7: The Ham Satellite That Refused To Die”

LiPo Replacement Keeps Portable Scanner In The Action

If there’s anything people hate more than being locked into a printer manufacturer’s replacement cartridges, it’s proprietary batteries. Cordless power tools are the obvious example in this space, but there are other devices that insist on crappy battery packs that are expensive to replace when they eventually die.

One such device is the Uniden Bearcat BC296D portable scanner that [Robert Guildig] found for a song at a thrift store, which he recently gave a custom LiPo battery upgrade. It came equipped with a nickel-cadmium battery pack, which even under the best of circumstances has a very limited battery life. Using regular AA batteries wasn’t an option, but luckily the space vacated by the OEM battery pack left a lot of room for mods. Those include a small module with BMS functions and a DC-DC converter, a 2,400 mAh 4.2 V LiPo pillow pack, and a new barrel connector for charging. With the BMS set for six volts and connected right to the old battery pack socket, the scanner can now run for seven hours on a one-hour charge. As a bonus, the LiPo pack should last a few times longer than the NiCd packs, and be pretty cheap to replace when it finally goes too. There’s a video after the hop with all the details.

If you’re looking at a similar battery replacement project, you might want to check out [Arya]’s guide to everything you need to know about lithium-ion circuitry.

Continue reading “LiPo Replacement Keeps Portable Scanner In The Action”

Save An Old Drill From Landfill, With Some Lithium-Ion Magic

What do you do, when your trusty cordless drill starts to lose battery capacity? You bought it a decade ago and parts are a distant memory, so there’s no chance of buying a new pack. If you are [Danilo Larizza], you strip away the old NiMh cells, and replace them with a custom pack (Italian, Google Translate link) made from 18650 Li-ion cells.

The build is a straightforward one to anyone familiar with lithium-ion packs, but to a battery newbie it should serve as a handy step-by-step description. He starts by selecting a range of matched cells from discarded laptop batteries and adds an off-the-shelf battery management board to keep everything safe. Interestingly he appears to have soldered his wires to the cells rather than the more usual spot-welding, sadly for many of us a spot-welder is beyond our means. It would be interesting to know both the mechanical integrity of the resulting connection and whether the heat of soldering might in some way affect the cells.

Firing up the drill with the new pack is not the immediate success he hoped it would be, the start-up current is so high that the battery management board goes into a fault condition. This situation is resolved with a model that can take more current, and he can take his drill out once more.

If you are annoyed by the rise of cordless tools, you’re in good company. Meanwhile if you lack a spot-welder for batteries, have a look at one of the nicer ones we’ve seen.