Open Source Multimeter Raises The Bar For DIY Tools

Whether you only dabble in electronics as a hobby or it’s your full-time job, there are few tools as indispensable as the multimeter. In fact, we’d be willing to bet nearly everyone reading this site owns at least one of them. But as common and mindbogglingly useful as they may be, they aren’t perfect. Even the high-end models will invariably have some annoyance that only reveals itself once you become intimately acquainted with it.

Most people would just live with those quirks, especially when dealing with a cheaper model. But not [John Duffy]. Deciding nothing but perfection would do, he took every favorite feature he’d ever run into while using other multimeters and combined them into his scratch-built HydraMeter. In the process, he managed to come up with a few new ideas that push this device into a league of its own.

Some of the features of the HydraMeter will look familiar. You might even have them on your own personal meter, such as the wireless removable display module. Other features you’ll wish your meter had, such as the removable cartridge on the front of the device that lets you rapidly swap out a burned fuse. On the other side of the spectrum, there are some esoteric features that might leave you scratching your head. The ability to tell exactly how the meter is configured at a glance thanks to its exclusive use of toggle switches has a certain hacker appeal, but it’s a tricky user interface for most folks.

While the overall design of the HydraMeter may be divisive, one thing we can all agree on is that getting the project to this state took incredible determination. Over the years we’ve only seen a handful of individuals attempt to develop their own multimeters, and even then, none of them approached this level of fit and finish. The fact that [John] has turned all that effort over to the community by releasing his design under the CERN license is truly admirable.

[John] brought the HydraMeter out to Pasadena back in November for Supercon, and it got quite a reaction. And if you don’t like the user interface, it’s not hard to imagine how you could change it. This project has unquestionably pushed the state of the art for open source multimeters forward, and we’re eager to see where it goes from here.

Continue reading “Open Source Multimeter Raises The Bar For DIY Tools”

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

Open Source, Forced Innovation, And Making Good Products

The open-source hardware business landscape is no doubt a tough one, but is it actually tougher than for closed-source hardware? That question has been on our minds since the announcement that the latest 3D printer design from former open-source hardware stalwarts Prusa Research seems like it’s not going to come with design files.

Ironically, the new Core One is exactly the printer that enthusiasts have been begging Prusa to make for the last five years or more. Since seeing hacker printers like the Voron and even crazy machines like The 100 whip out prints at incredible speed, the decade-old fundamental design of Prusa’s i3 series looks like a slow and dated, if reliable, workhorse. “Bed slinger” has become a bit of a pejorative for this printer architecture in some parts of the 3DP community. So it’s sweet to see Prusa come out with the printer that everyone wants them to make, only it comes with the bitter pill of their first truly closed-source design.

Is the act of not sharing the design files going to save them? Is it even going to matter? We would argue that it’s entirely irrelevant. We don’t have a Core One in our hands, but we can’t imagine that there is anything super secret going on inside that couldn’t be reverse engineered by any other 3DP company within a week or so. If anything, they’re playing catch up with other similar designs. So why not play to one of their greatest strengths – the engaged crowd of hackers who would most benefit from having the design files?

Of course, Prusa’s decision to not release the design files doesn’t mean that they’re turning their backs on the community. They are also going to offer an upgrade package to turn your current i3 MK4 printer into the new Core One, which is about as hacker-friendly a move as is possible. They still offer kit versions of the printers at a discount, and they continue to support their open-source slicer software.

But this one aspect, the move away from radical openness, still strikes us as bittersweet. We don’t have access to their books, of course, but we can’t imagine that not providing the design files gains them much, and it will certainly damage them a little in the eyes of their most devoted fans. We hope the Core One does well, but we also hope that people don’t draw the wrong lesson from this – that it does well because it went closed source. If we could run the experiment both ways, we’d put our money on it doing even better if they released the design files.

With Core ONE, Prusa’s Open Source Hardware Dream Quietly Dies

Yesterday, Prusa Research officially unveiled their next printer, the Core ONE. Going over the features and capabilities of this new machine, it’s clear that Prusa has kept a close eye on the rapidly changing desktop 3D printer market and designed a machine to better position themselves within a field of increasingly capable machines from other manufacturers.

While some saw the incremental upgrades of the i3 MK4 as being too conservative, the Core ONE ticks all the boxes of what today’s consumer is looking for — namely high-speed CoreXY movement with a fully enclosed chamber — while still offering the build quality, upgradability, and support that the company has built its reputation on. Put simply it’s one of the most exciting products they’ve introduced in a long time, and exactly the kind of machine that many Prusa fans have been waiting for.

Unfortunately, there’s one feature that’s ominously absent from the Core ONE announcement post. It’s easy to overlook, and indeed, most consumers probably won’t even know it’s missing. But for those of us who are concerned with such matters, it’s an unspoken confirmation that an era has finally come to an end.

With the Core ONE, Prusa Research is no longer in the business of making open source 3D printer hardware, but that doesn’t mean that the printer isn’t hackable. It’s complicated, so read on.

Continue reading “With Core ONE, Prusa’s Open Source Hardware Dream Quietly Dies”

Prusa Picks Up The Pace With New MK4S Printer

One of the things you’re paying for when you buy a 3D printer from Prusa Research is, essentially, your next 3D printer. That’s because Prusa’s machines are designed to be upgraded and modified as time goes on. An upgrade kit is always released to allow each older printer to be converted into its successor, and while there’s occasionally been some debate about whether or not it’s the most cost-effective choice, at least it is a choice you have as an owner.

If you’ve got a Prusa MK4, you’ll soon get to make that decision for yourself. Announced earlier today, the new MK4S brings some notable changes to last year’s printer. The $99 upgrade is scheduled to be available by the end of the month for existing owners, but if you’ve been on the fence about joining Team Orange and Black, you can purchase the MK4S right now in both kit and assembled forms for the same price ($799 and $1,099 respectively) as the previous MK4.

Continue reading “Prusa Picks Up The Pace With New MK4S Printer”

A map of the world with continents in light grey and countries outlined in dark grey. A nuber of yellow and grey circles with cartoon factories on them are connected with curved lines reminiscent of airplane flight paths. The lines have seemingly-arbitrary binary ones and zeros next to them. All of the grey factories are in the Americas, likely since IoP is currently focused on Africa and Europe.

Internet Of Production Alliance Wants You To Think Globally, Make Locally

With the proliferation of digital fabrication tools, many feel the future of manufacturing is distributed. It would certainly be welcome after the pandemic-induced supply chain kerfuffles from toilet paper to Raspberry Pis. The Internet of Production Alliance (IoP) is designing standards to smooth this transition. [via Solarpunk Presents]

IoP was founded in 2016 to build the infrastructure necessary to move toward a global supply chain based on local production of goods from a global database of designs instead of the current centralized model of production with closed designs. Some might identify this decentralization as part of the Fourth Industrial Revolution. They currently have developed two standards, Open Know-Where [PDF] and Open Know-How.

Open Know-Where is designed to help locate makerspaces, FabLabs, and other spaces with the tools and materials necessary to build a thing. The sort of data collected here is broken down in to five categories: manufacturing facility, people, location, equipment, and materials. Continue reading “Internet Of Production Alliance Wants You To Think Globally, Make Locally”

Hack Club OnBoard

Hack Club Grants Encourage Open Source PCB Designs By Teens

[Hack Club] is a nonprofit network of coder and maker clubs for teenage high school students around the world. With an impressive reach boasting clubs in about 400 schools, they serve approximately 10,000 students. Their OnBoard program asserts, “Circuit boards are magical. You design one, we’ll print it!”

Any teenage high school student can apply for a [Hack Club] OnBoard Grant to have their Printed Circuit Board design fabricated into real hardware.  The process starts by designing a PCB using any tool that can generate Gerber files. The student then publishes their design on GitHub and submits the Gerber files to a PCB manufacturer.

A screenshot from the board house showing the completed design upload and production cost is the main requirement of the grant application.  If approved, the grant provides up to $100 to cover PCB manufacturing costs.

OnBoard encourages collaboration, community, and friends. Designers can share their projects and progress with [Hack Club] teens around the world. Those who are working on, or have completed, their own circuit board designs can share support and encouragement with their peers.

Example hardware projects from [Hack Club] include Sprig, an open-source handheld game console based on the Raspberry Pi Pico microcontroller.  Teen makers can explore the example OnBoard projects and then it’s… three, two, one, go!