A Love Letter To Prototype Zero

An old friend of mine at my hackerspace introduced me to the concept of Prototype Zero: The Version that Even Your Own Sweet Mother Isn’t Allowed to See. The idea is that when you’re building something truly new, or even just new to you, your first take will almost always be ugly, and nothing will work the way it will by the time you make your second one. But it’s also important to the exercise that you see it all the way through to the end if you can.

I’m reminded of this after seeing a marvelous video by [Japhy Riddle] where he discusses his Prototype Zero of the Tape-Speed Keyboard. About halfway through the video he says that he would have done it totally differently if he knew then what he knows now: the hallmark of Prototype Zero. Yet he finishes it up, warts and all, documents it, and plays around with all of its possibilities. (Documenting it publicly isn’t part of the Prototype Zero method.)

I don’t think that [Japhy] is going to make a Prototype 1.0 out of this project, but I could be wrong; he seems to be content with having scratched the variable-speed tape itch. But if he did want to, he’s learned all of the gotchas on the engineering side, and found out exactly what such an instrument is capable of. And this loops back to the importance of getting Prototype Zero finished. You may have learned all of the tricks necessary to build the thing even before you’ve put the last screw in, but it’s when you actually have the thing in your hands to explore that you get the ideas for refinement that you simply can’t think up when it’s still just a concept.

Don’t be afraid to make your prototype quick and dirty, because if it ends up too dirty, you can just call it Prototype Zero. But don’t be tempted by the siren’s song of the 80% finished prototype either. Exploring putting Prototype Zero into use is its real purpose.

Supercon 2024: From Consultant To Prototyper On A Shoestring Budget

Many engineers graduate from their studies and head out into the workforce, seeking a paycheck and a project at some existing company or other. Often, it’s not long before an experienced engineer begins to contemplate striking out on their own, working as a skilled gun-for-hire that makes their own money and their own hours.

It’s a daunting leap, but with the promise of rich rewards for those that stick the landing. That very leap is one that our own Dave Rowntree made. He came to Supercon 2024 to tell us what the journey was like, and how he wound up working on some very special shoes.

Continue reading “Supercon 2024: From Consultant To Prototyper On A Shoestring Budget”

A Prototyping Board With Every Connector

Prototyping is a personal affair, with approaches ranging from dead-bug parts on tinplate through stripboard and protoboard, to solderless breadboards and more. Whichever you prefer, a common problem is that they don’t offer much in the way of solid connections to the outside world. You could use break-out boards, or you could do like [Pakequis] and make a prototyping board with every connector you can think of ready to go.

The board features the expected prototyping space in the middle, and we weren’t joking when we said every connector. There are analogue, serial, USB, headers aplenty, footprints for microcontroller boards, an Arduino shield, a Raspberry Pi header, and much more. There will doubtless be ones that readers will spot as missing, but it’s a pretty good selection.

We can imagine that with a solderless breadboard stuck in the middle it could be a very useful aid for teaching electronics, and we think it would give more than a few commercial boards a run for their money. It’s not the first we’ve featured, either.

Continue reading “A Prototyping Board With Every Connector”

CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping

Jack of all trades, master of none, as the saying goes, and that’s especially true for PCB prototyping tools. Sure, it’s possible to use a CNC router to mill out a PCB, and ditto for a fiber laser. But neither tool is perfect; the router creates a lot of dust and the fiberglass eats a lot of tools, while a laser is great for burning away copper but takes a long time to burn through all the substrate. So, why not put both tools to work?

Of course, this assumes you’re lucky enough to have both tools available, as [Mikey Sklar] does. He doesn’t call out which specific CNC router he has, but any desktop machine should probably do since all it’s doing is drilling any needed through-holes and hogging out the outline of the board, leaving bridges to keep the blanks connected, of course.

Once the milling operations are done, [Mikey] switches to his xTool F1 20W fiber laser. The blanks are placed on the laser’s bed, the CNC-drilled through holes are used as fiducials to align everything, and the laser gets busy. For the smallish boards [Mikey] used to demonstrate his method, it only took 90 seconds to cut the traces. He also used the laser to cut a solder paste stencil from thin brass shim stock in only a few minutes. The brief video below shows the whole process and the excellent results.

In a world where professionally made PCBs are just a few mouse clicks (and a week’s shipping) away, rolling your own boards seems to make little sense. But for the truly impatient, adding the machines to quickly and easily make your own PCBs just might be worth the cost. One thing’s for sure, though — the more we see what the current generation of desktop fiber lasers can accomplish, the more we feel like skipping a couple of mortgage payments to afford one.

Continue reading “CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping”

Modular Breadboard Snaps You Into Benchtop Tidiness

Solderless breadboards are a fantastic tool for stirring the creative juices. In a few seconds, you can go from idea to prototype without ever touching the soldering iron. Unfortunately, the downside to this is that projects tend to expand to occupy all the available space on the breadboard, and the bench surrounding the project universally ends up cluttered with power supplies, meters, jumpers, and parts you’ve swapped in and out of the circuit.

In an attempt to tame this runaway mess, [Raph] came up with this neat modular breadboard system. It hearkens back to the all-in-one prototyping systems we greatly coveted when the whole concept of solderless breadboards was new and correspondingly unaffordable. Even today, combination breadboard and power supply systems command a pretty penny, so rolling your own might make good financial sense. [Raph] made his system modular, with 3D-printed frames that lock together using clever dovetail slots. The prototyping area snaps to an instrumentation panel, which includes two different power supplies and a digital volt-amp meter. This helps keep the bench clean since you don’t need to string leads all over the place. The separate bin for organizing jumpers and tidbits that snaps into the frame is a nice touch, too.

Want to roll your own? Not a problem, as [Raph] has thoughtfully made all the build files available. What’s more, they’re parametric so you can customize them to the breadboards you already have. The only suggestion we have would be that making this compatible with [Zack Freedman]’s Gridfinity system might be kind of cool, too.

Jumperless Breadboard V5 Readies For Launch

When are jumper wires on a breadboard entirely optional? When it’s the latest version of [Kevin Santo Cappuccio]’s Jumperless, which uses a bunch of analog crosspoint switches (typically used for handling things like video signals) to create connections instead of physical wires. There’s even an RGB LED under each hole capable of real-time visualization of signals between components.

If this looks a bit familiar, that’s because an earlier version took second place in the 2023 Hackaday Prize. But things have evolved considerably since then. There are multiple programmable power rails, ADC channels, a rotary encoder, and much more. The PCB design itself is fantastic, including the probe which acts like a multi-function tool for interacting with the whole thing. The newest version will make its debut on Crowd Supply in just a few days.

It’s open source and made to be hackable, so give the GitHub repository a look if you want a closer peek. You can watch it in action in a brief video posted to social media, embedded below.

Continue reading “Jumperless Breadboard V5 Readies For Launch”

Marimbatron: A Digital Marimba Prototyping Project

The Marimbatron is [Leo Kuipers] ‘s final project as part of the Fab Academy program supervised by [Prof. Neil Gershenfeld] of MIT’s Center for Bits and Atoms. The course aims to teach students how to leverage all the fab lab skills to create unique prototypes using the materials at hand.

The final polyurethane/PET/Flex PCB stack-up for the sensor pad

Fortunately, one of the main topics covered in the course is documentation, and [Leo] has provided ample material for review. The marimba consists of a horizontal series of wooden bars, each mounted over a metal resonator tube. It is played similarly to the xylophone, with a piano-type note arrangement, covering about five octaves but with a lower range than the xylophone. [Leo] converted this piano-type layout into a more logical grid arrangement. The individual pads are 3D printed in PETG and attached to a DIY piezoresistive pressure sensor made from a graphite-sprayed PET sheet laid upon a DIY flexible PCB. A central addressable LED was also included for indication purposes. The base layer is made of cast polyurethane, formed inside a 3D-printed rigid mould. This absorbs impact and prevents crosstalk to nearby sensors. The sensor PCB was initially prototyped by adhering a layer of copper tape to a layer of Kapton tape and cutting it out using a desktop vinyl cutter. While this method worked for the proof of concept, [Leo] ultimately outsourced the final version to a PCB manufacturer. The description of prototyping the sensor and dealing with over-moulding was particularly fascinating.

Continue reading “Marimbatron: A Digital Marimba Prototyping Project”