Adding Smart Watch Features To Vintage Casio

[Matteo] has been a fan of the Casio F-91W wristwatch virtually since its release in 1989. And not without good reason, either. The watch boasts reliable timekeeping and extremely long battery life thanks to a modern quartz crystal and has just about every feature needed in a watch such as an alarm and a timer. And, since it’s been in use since the 80s, it’s also a device built to last. The only thing that’s really missing from it, at least as far as [Matteo] was concerned, was a contactless payment ability.

Contactless systems use near-field communication (NFC) to remotely power a small chip via a radio antenna when in close proximity. All that’s really required for a system like this is to figure out a way to get a chip and an antenna and to place them inside a new device. [Matteo] scavenges the chip from a payment card, but then builds a new antenna by hand in order to ensure that it fits into the smaller watch face. Using a NanoVNA as an antenna analyzer he is able to recreate the performance of the original antenna setup in the smaller form factor and verify everything works before sealing it all up in a 3D-printed enclosure that sandwiches the watch.

There are a few reasons why using a contactless payment system with a watch like this, instead of relying on a smartwatch, might be preferential. For one, [Matteo] hopes to explore the idea that one of the physical buttons on the watch could be used to physically disable the device to reduce pickpocketing risk if needed. It’s also good to not have to buy the latest high-dollar tech gadget just for conveniences like this too, but we’ve seen in the past that it’s not too hard just to get these systems out of their cards in the first place.

ESPboy Turned Into Functional Walkie-Talkie

The ESPBoy was first built as a hackable open-source game engine and handheld console for educational purposes. However, it’s also a platform that can readily support all kinds of other uses. You can even turn the humble handheld device into a working walkie talkie.

The build relies on adding a SA868 transceiver module to the ESPBoy, along with a microphone, speaker, audio amplifier and antenna as supporting hardware. It then relies on the ESPBoy’s existing screen and buttons as a user interface for the radio. Assembled appropriately, it can then be used as a very basic and barebones walkie talkie for voice communication.

You won’t get coded squelch or other useful features, but it’s enough to let you talk over the air with other handheld radio users. The SA868 module can transmit on a variety of frequency bands, but the video shows it operating in the UHF band around 433 MHz. With a power on the order of 1.8W, it should get you a few kilometers of transmission range in an open field.

Check out our earlier coverage of the ESPBoy and its many different configurations. Video after the break.

Continue reading “ESPboy Turned Into Functional Walkie-Talkie”

Networking With Balloons

Starlink has been making tremendous progress towards providing world-wide access to broadband Internet access, but there are a number of downsides to satellite-based internet such as the cluttering of low-Earth orbit, high expense, and moodiness of CEO. There are some alternatives if standard Internet access isn’t available, and one of the more ambitious is providing Internet access by balloon. Project Loon is perhaps the most famous of these (although now defunct), but it’s also possible to skip the middleman and build your own high-altitude balloon capable of connection speeds of 500 Kbps.

[Stephen] has been working on this project for a few months and while it doesn’t support a full Internet connection, the downlink on the high altitude balloon is fast enough to send high-resolution images in near-real-time. This is thanks to a Raspberry Pi Zero on board the balloon that is paired with an STM32 board which handles the radio communication on a RF4463 transceiver module. The STM32 acts as an intermediary or buffer to ensure reliable information is sent out on the radio, rather than using the Pi directly. [Stephen] also wrote a large chunk of the software responsible for handling all of these interactions, optimized for balloon flight specifically.

The blog post for this project was written a few weeks ago with a reported first launch date for the system already passed, so we will eagerly anticipate the results and the images he was able to gather using this system. Eventually [Stephen] hopes the downlink will be fast enough for video as well.Balloons are an underappreciated tool as well, and this isn’t the only way that they can be used to help send radio signals from place to place.

Easy Modifications For Inexpensive Radios

Over the past decade or so, amateur radio operators have benefited from an influx of inexpensive radios based around a much simpler design than what was typically commercially available, bringing the price of handheld dual-band or GMRS radios to around $20. This makes the hobby much more accessible, but they have generated some controversy as they tend to not perform as well and can generate spurious emissions and other RF interference that a higher quality radio might not create. But one major benefit besides cost is that they’re great for tinkering around, as their simplified design is excellent for modifying. This experimental firmware upgrade changes a lot about this Quansheng model.

With the obligatory warning out of the way that modifying a radio may violate various laws or regulations of some localities, it looks like this modified firmware really expands the capabilities of the radio. The chip that is the basis of the radio, the BK4819, has a frequency range of 18-660 MHz and 840-1300 MHz but not all of these frequencies will be allowed with a standard firmware in order to comply with various regulations. However, there’s typically no technical reason that a radio can’t operate on any arbitrary frequency within this range, so opening up the firmware can add a lot of functionality to a radio that might not otherwise be capable.

Some of the other capabilities this modified firmware opens up is the ability to receive in various other modes, such as FM and AM within the range of allowable frequencies. To take a more deep dive on what this firmware allows be sure to check out the original GitHub project page as well, and if you’re curious as to why these inexpensive radios often run afoul of radio purists and regulators alike, take a look at some of the problems others have had in Europe.

Ham Pairs Nicely With GMRS

Ignoring all of the regulations, band allocations, and “best amateur practices,” there’s no real fundamental difference between the frequencies allocated to the Family Radio Service (FRS), the General Mobile Radio Service (GMRS), the Multi-Use Radio Service (MURS), and the two-meter and 70-centimeter bands allocated to licensed ham radio operators. The radio waves propagate over relatively short distances, don’t typically experience any skip, and are used for similar activities. The only major difference between these (at least in the Americas or ITU region 2) is the licenses you must hold to operate on the specific bands. This means that even though radios are prohibited by rule from operating across these bands, it’s often not too difficult to find radios that will do it anyway.

[Greg], aka [K4HSM], was experimenting with a TIDRADIO H8 meant for GMRS, which in North America is a service used for short-range two-way communication. No exams are required, but a license is still needed. GMRS also allows for the use of repeaters, making it more effective than the unlicensed FRS. GMRS radios, this one included, often can receive or scan frequencies they can’t transmit on, but in this case, the limits on transmitting are fairly easy to circumvent. While it isn’t allowed when programming the radio over Bluetooth, [K4HSM] found that programming it from the keypad directly will allow transmitting on the ham bands and uses it to contact his local two-meter and 70-cm repeaters as a proof-of-concept.

The surprising thing about this isn’t so much that the radio is physically capable of operating this way. What’s surprising is that this takes basically no physical modifications at all, and as far as we can tell, that violates at least one FCC rule. Whether or not that rule makes any sense is up for debate, and it’s not likely the FCC will break down your door for doing this since they have bigger fish to fry, but we’d definitely caution that it’s not technically legal to operate this way.

Continue reading “Ham Pairs Nicely With GMRS”

Long-Distance Wi-Fi With Steam Deck Server

It’s no secret that the Steam Deck is a powerful computer, especially for its price point. It has to be capable enough to run modern PC games while being comfortable as a handheld, all while having a useful amount of battery life. Thankfully Valve didn’t lock down the device like most smartphone manufacturers, allowing the computer to run whatever operating system and software the true owner of the device wants to run. That means that a whole world of options is open for this novel computer, like using it to set up an 802.11ah Wi-Fi network over some pretty impressive distances.

Of course the Steam Deck is more of a means to an end for this project; the real star of the show is DragonOS, a Debian-based Linux distribution put together by [Aaron] to enable easy access to the tools needed for plenty of software-defined radio projects like this one. Here, he’s using it to set up a long-distance Wi-Fi network on one side of a lake, then testing it by motoring over to the other side of the lake to access the data from the KrakenSDR setup running on the Deck, as well as performing real-time capture of IQ data that was being automatically demodulated and feed internally to whispercpp.

While no one will be streaming 4K video over 802.11ah, it’s more than capable of supporting small amounts of data over relatively large distances, and [Aaron] was easily able to SSH to his access point from over a kilometer away with it. If the lake scenery in the project seems familiar at all, it’s because this project is an extension of another one of his DragonOS projects using a slightly lower frequency to do some impressive direction-finding, also using the Steam Deck as a base of operations.

Continue reading “Long-Distance Wi-Fi With Steam Deck Server”

LTE Sniffer Ferrets Out Cellular Communications

LTE networks have taken over from older technologies like GSM in much of the world. Outfitted with the right hardware, like a software defined radio, and the right software, it’s theoretically possible to sniff some of this data for yourself. The LTESniffer project was built to do just this. 

LTESniffer is able to sniff downlink traffic from base stations using a USRP B210 SDR, outfitted with two antennas. If you want to sniff uplink traffic, though, you’ll need to upgrade to an X310 with two daughterboards fitted. This is due to the timing vagaries of LTE communication. Other solutions can work however, particularly if you just care about downlink traffic.

If you’ve got that hardware though, you’re ready to go. The software will help pull out LTE signals from the air, though it bears noting that it’s only designed to work with unencrypted traffic. It won’t help you capture the encrypted communications of network users, though it can show you various information like IMSI numbers of devices on the network. Local regulations may prevent you legally even doing this, and if so, the project readme recommends setting up your own LTE network to experiment with instead.

Cellular sniffing has always been somewhat obscure and arcane, given the difficulty and encryption involved, to say nothing of the legal implications. Regardless, some hackers will always pursue a greater knowledge of the technology around them. If you’ve been doing just that, let us know what you’re working on via the tipsline.