Robofish > Real Fish


This is the kind of engineering that gets us excited, and not just because we like machines modeled on living things. Science Daily reports that Associate professor [Kristi Morgansen] from The University of Washington has developed these robofish for underwater data collection. Her technology is notable for two major reasons: the small robots use fins for locomotion instead of propellers, which reduces drag and creates greater maneuverability. The second and more important reason is that the robofish can communicate with each other via sonar, largely obviating the need for the robofish to surface for more instructions. Both design concepts were inspired by the shape and behavior of real fish. Currently the robots are only programmed to swim with or away from each other, but these are still prototypes and the technology looks promising. For more tech specs on these “Fin Actuated Autonomous Underwater Vehicles” (see why Robofish is better?), you can have a look at Morgansen’s notes.

Nanobot Nanosoccer


Medgadget recently published a post about a soccer competition for nanobots at RoboCup. The nanobots compete on a field that measures 1500 by 2500 micrometers with goals on the long sides jutting 500 micrometers out. Like normal soccer athletes, the nanobot teams attempt to push the ball – in this case, a silicon dioxide disc with a 50 micrometer diameter – into the goal. The nanobot competitors are monitored by an optical microscope and are remotely controlled by magnetic signals sent across the arena.

The National Institute of Standards and Technology (NIST) and RoboCup have already held two nanobot competitions in the last year. Nanobots made by different teams from various universities compete to test various abilities that will be critical for their practical applications in medicine, manufacturing, and other industries.

Though it is referred to as nanosoccer, the competition is actually a triathlon. The bots must sprint to the goal with the ball in one event, then maneuver the ball around stationary “defenders” and into the goal in the next event, and finally score as many goals as possible within 3 minutes. NIST and RoboCup hope to show the practical potential of nanobots with this competition and have a little fun in the process.

[via Medgadget]

Simple Linux Robot With IR Camera


Here’s something else we found while writing up our duplicate Ikea Linux Cluster post. [Janne] also built this simple linux robot. The robot uses the Qwerk robot controller, a webcam with the IR filter removed (something like this one), a usb WiFi card, an IR spotlight, and a set of repurposed model airplane wheels. The WiFi adapter and webcam attach directly to the Qwerk via its on-board usb ports; the servo motors are also connected via built-in ports. Although [Janne] doesn’t post specific instructions, the Qwerk platform seems fairly easy to work with. Have a look at the Qwerk overview for more information.

PIC Controlled Spray Paint


Most people make LEDs light up for their first microcontroller project. [Alex] built a “large scale dot matrix printer.” This beast is a PIC controlled ground graffiti machine. As it rolls across the ground it deposits strategically located bits of spray paint. Rather than use actual spray paint, he opted for a set of solenoid controlled nozzles that shoot the paint downward.

The Chief Cook Robot


We feel the need to apologize immediately for the use of Yakkity Sax in the preceding video and recommend you watch the longer, yak free, video below. It shows researchers at the Learning Algorithms and Systems Laboratory teaching a robot how to make a ham and cheese omelet. Each working area and food item is labeled with a machine recognizable tag. The researcher demonstrates the task by guiding the robot’s hand. The robot combines multiple demonstrations to generalize the skill. It can then adapt the learned skill to the specific task. You can see this in the video when the robot adjusts to the location of the bowl and cutting board when they’re moved around. Teaching through demonstration would make the use of robotics much easier for the general population.

Continue reading “The Chief Cook Robot”