Competitive Soldering Gets Heated At Hackaday Superconference

The Hackaday Superconference is in full swing, and in addition to the greatest hardware hackers, a great gathering of tinkerers, awesome talks, badge hacking, and so much more, we’ve also got competitive soldering. This year, we’re making soldering competitive with the SMD Solder Challenge. It began Friday morning as hackers go heat to head, hand soldering frustratingly tiny parts.

The rules are simple: you’re given a light, a magnifying glass, some solder, wick, flux, and the standard Hakko soldering iron (with the standard tip). The task is to solder up our own special version of the SMD Challenge Kit from MakersBox that includes an SOIC8 ATtiny85 to drive LED/resistor pairs in 1206, 0805, 0603, 0402, and 0201 packages. Scoring is based on time, completion, functionality, neatness, and solder joint quality. May the steadiest hands and sharpest eyes win.

Already, we’ve gone through a few heats of the SMD Soldering Challenge where six hackers sit down, are given five minutes of inspection time, and then whip out their irons. All of this is run by our very own [Al Williams], who serves as the ultimate arbiter of what good soldering is. It’s an amazing competition, and if you don’t think 0201 packages are hand-solderable, you haven’t seen the attendees at the Hackaday Supercon. The top times, by the way, are between 20-30 minutes to complete the entire challenge, with [Sprite_tm] currently at the top of the leaderboard.

You can check out all the talks from the Hackaday Superconference over on our live stream, where we’ll (eventually) be announcing the winners of the SMD Soldering Challenge and the winners of the badge hacking competition later on. Don’t miss the announcement of the winner of the 2018 Hackaday Prize later on this evening!

Flexible Battery Meter Bends Over Backward To Work

A lithium-ion battery tester seems like a simple project, at least electrically. But when you start thinking about the physical problem of dealing with a huge range of battery sizes, things get a little more complicated. Sure, you can 3D-print adapters and jigs to accommodate the different batteries, or you can cheat a bit and put the charger and tester circuit on a flexible PCB.

Maybe it’s the Kapton talking, but we really like the look of [Androkavo]’s project. The idea is simple – rather than use a rigid FR4 printed circuit board, a flexible polyimide film PCB a little longer than the biggest battery to be tested was fabricated. With large contacts on each end, the board can just be looped across the battery to take a reading. For charging, neodymium magnets on the other side of the board keep the charger in contact with the battery. The circuit itself is built around an STM8S003 8-bit microcontroller and a handful of discrete components. There’s a bar graph display for battery voltage that covers 2.0 to 4.9 volts, and a USB port for charging. The charger works with everything from the big 21700 cells down to the short 14500s. With the help of another magnet to keep the board from bending too sharply, even the diminutive 10180 can be charged. Check out the video below, which has some of the most relaxing music and best microscope shots of SMD soldering we’ve seen.

Flexible PCBs are versatile things. Not only can they make projects like this successful, but they can also wriggle around, swim, or even play music.

Continue reading “Flexible Battery Meter Bends Over Backward To Work”

Minimal Blinky Project Makes The Chip The Circuit Board

We’ve got a thing for projects that have no real practical value but instead seek to answer a simple yet fundamental question: I wonder if I can do that? This dead-bug style 555 blinky light is one of those projects, undertaken just to see how small a circuit can be. Pretty small, as it turns out, and we bet it can get even smaller.

[Danko]’s minimal circuit is about as small as possible for the DIP version of the venerable 555 chip. The BOM is stripped to the bone: just the chip, three resistors, a capacitor, and an LED. All the discrete components are SMDs in 0805. The chip’s leads are bent around the package to form connections, and the SMDs bridge those “traces” to complete the circuit. [Danko] shows the build in step-by-step detail in the video below. There’s some fairly fine work here, but we can’t help wondering just how far down the scale this could be pushed. We know someone’s made a smaller blinky using a tiny microcontroller, but we’d love to see this tried with the BGA version of the chip which is only 1.4 mm on a side.

Cheers to [Danko] for trying this out and having some fun with an old chip. He seems to have a bit of a thing for the 555; check out this cute robot sculpture that’s built around the chip.

Continue reading “Minimal Blinky Project Makes The Chip The Circuit Board”

Ask Hackaday: How’s That Capacitor Shortage Going?

There is a looming spectre of doom hovering over the world of electronics manufacturing. It’s getting hard to find parts, and the parts you can find are expensive. No, it doesn’t have anything to with the tariffs enacted by the United States against Chinese goods this last summer. This is a problem that doesn’t have an easy scapegoat. This is a problem that strikes at the heart of any economic system. This is the capacitor and resistor shortage.

When we first reported on the possibility of a global shortage of chip capacitors and resistors, things were for the time being, okay. Yes, major manufacturers were saying they were spinning down production lines until it was profitable to start them up again, but there was relief: parts were in stock, and they didn’t cost that much more.

Now, it’s a different story. We’re in the Great Capacitor Shortage of 2018, and we don’t know when it’s going to get any better. Continue reading “Ask Hackaday: How’s That Capacitor Shortage Going?”

Competitive Soldering Is Now A Thing

At Hackaday, we’re constantly impressed by the skill and technique that goes into soldering up some homebrew creations. We’re not just talking about hand-soldering 80-pin QFNs without a stencil, either: there are people building charlieplexed LED arrays out of bare copper wire, and using Kynar wire for mechanical stability. There are some very, very talented people out there, and they all work in the medium of wire, heat, and flux.

At this year’s DEF CON, we opened the floodgates to competitive soldering. Along with [Bunny] from Hardware Hacking Village and the many volunteers from the HHV and Soldering Skills Village, dozens competed to solder up a tiny kit full of LEDs and microscopic resistors.

The kit in question was an SMD Challenge Kit put together my MakersBox, and consisted of a small PCB, an SOIC-8 ATtiny, and a LED and resistor for 1206, 0805, 0603, 0402, and 0201 sizes. The contest is done in rounds. Six challengers compete at a time, and everyone is given 35 minutes to complete the kit.

We’ve seen — and participated in — soldering challenges before, and each one has a slightly unique twist to make it that much more interesting. For example, at this summer’s Toorcamp, the soldering challenge was to simply drink a beer before moving to the next size of parts. You would solder the 1206 LED and resistor sober, drink a beer, solder the 0805, drink a beer, and keep plugging away until you get to the 01005 parts. Yes, people were able to do it.

Of course, being DEF CON and all, we were trying to be a bit more formal, and drinking before noon is uncouth. The rules for this Soldering Challenge award points on five categories: the total time taken, if the components are actually soldered down, a ‘functionality’ test, the orientation of the parts, and the quality of the solder joints.

The winners of the soldering challenge, at the Hackaday Breakfast Meetup at DEF CON 26

So, with those rules in place, who won the Soldering Challenge at this year’s DEF CON? Out of a total 25 points, the top scorers are:

  • [True] – 23 pts
  • [Rushan] – 19 pts
  • [Ryan] – 18 pts
  • [Beardbyte] – 18 pts
  • [Casey] – 18 pts
  • [Bob] – 18 pts
  • [Nick] – 18 pts
  • [JEGEVA] – 18 pts

The Soldering Challenge had an incredible turnout, and the entire Soldering Skills Village was packed to the gills with folks eager to pick up an iron. The results were phenomenal!

We’d like to extend a note of thanks to [Bunny], the Hardware Hacking Village, the Soldering Skills Village, and MakersBox for making this happening. It was truly a magical experience, and now that competitive soldering is a thing, we’re going to be doing this a few more times. How do you think this could be improved? Leave a note in the comments.

SMD Soldering Challenge Lands At DEF CON

Strap on the jeweler’s loupe and lay off the caffeine for a few days. You’ll need to be at your peak for the SMD Soldering Challenge at this year’s DEF CON (number 26 for those counting).

It’s exciting to see that a Soldering Skills Village has been added to the conference this year. It will be in the same room as the Hardware Hacking Village. After all, who doesn’t want to solder at a conference? This soldering challenge is a great way to ring in the new village, and will take place in eight heats of six people for a total of 48 contestants. If you want to compete, make sure you get to the village right away and sign up for a slot!

A familiar board is being used for the contest. It’s the SMD Challenge board which MakersBox developed. You can check out the Hackaday.io project page and even order one from their Tindie store if you like. The contest will be scored based on time, completion, functionality, precise orientation, and quality of the joints.

The SOIC ATtiny85 is a snap to place on the board, but things get harder with each step. To successfully complete it you need to solder both a resistor and an LED in 1206, 0805, 0603, 0402, and 0201 packages. Those oh-two-oh-ones are basically grains of sand… good luck with that! We’re really excited that MakersBox rolled some custom Hackaday and Tindie boards (pictured above) for this contest which we’re honored to sponsor. It sounds as if the winners will be announced during Hackaday and Tindie’s traditional Breakfast at DEF CON which is happening at 10:30am on Sunday in the HHV.

We plan to spectate during some of the heats and if you’re at the con you should too! For those participating, here’s our advice. Practice soldering the smallest of parts ahead of time (watch some videos on it at the very least). Bring a multimeter to test the diode polarity because you won’t be able to see the symbols on the smallest parts. You may even consider bringing some custom tools; this surface mount “clamp” comes to mind, you’ll just need a much smaller version.

If you have advice of your own, we’d love to hear it in the comments below!

Monoprice Mini Converted To Pick And Place (Kinda)

Would you believe that you can take a cheap 3D printer and easily convert it into a full function pick and place machine to help assemble your PCBs? No? Well good, because you can’t. A real pick and place needs all kinds of sensors and logic to identify parts, rotate them, make sure everything is aligned, etc, etc. There’s no way you could just bolt all that onto a cheap 3D printer, and let’s not even talk about the lack of closed loop control.

But if you have a very specific use case, namely a PCB that only has a relatively large single part that doesn’t need to be rotated, [Connor Nishijima] might have a solution for you. He bought a $150 USD Monoprice Mini, and with the addition of a few printed parts, was able to build a machine that drastically cuts down the time it takes for him to build his LED boards. Best of all the modification doesn’t involve any permanent changes to the printer, he can just pop off the vacuum attachment when he wants to print something.

Beyond the 3D printed parts (which were made on the printer itself), the only thing you need to make the modification is the vacuum pump. [Connor] is using a hot air station that includes a vacuum pump for picking up SMD components, but he mentions that you’d probably better off just modifying an aquarium pump and using that. A printed holder snaps over the cooling fan of the Monoprice Mini to hold the vacuum pickup tool, and another printed piece holds the strip of LEDs and the PCB. It’s worth noting that the machine has no ability to control the vacuum pump, and doesn’t need to. The pickup tool is so weak that when the LED lands in the solder paste it sticks to the board well enough that the tool can’t lift it back off.

The real genius in this build comes from the manually written G-Code. You load it from the printer’s built in menu system as if it was a normal 3D print, and it instructs the printer to move the vacuum tool over the line of LEDs, pick one up, and drop it in place on the PCB. It then uses a small peg built into the vacuum tool holder to advance the line of LEDs before starting the cycle all over again. Incredibly, it does this whole complex dance 20 times for each PCB without ever having any kind of feedback or alignment check. It only works because [Connor] was willing to go through the trial and error of getting the calibration and G-Code down as close to perfect as can be expected for such a cheap machine.

This isn’t the first time we’ve seen the Monoprice Mini converted into something a bit more impressive than a cheapo 3D printer. Seems that for whatever the machine lacks in the printing department, it more than makes up for in hackability.

Continue reading “Monoprice Mini Converted To Pick And Place (Kinda)”