Review: IFixit’s FixHub May Be The Last Soldering Iron You Ever Buy

Like many people who solder regularly, I decided years ago to upgrade from a basic iron and invest in a soldering station. My RadioShack digital station has served me well for the better part of 20 years. It heats up fast, tips are readily available, and it’s a breeze to dial in whatever temperature I need. It’s older than both of my children, has moved with me to three different homes, and has outlived two cars and one marriage (so far, anyway).

When I got this, Hackaday still used B&W pictures.

As such, when the new breed of “smart” USB-C soldering irons started hitting the scene, I didn’t find them terribly compelling. Oh sure, I bought a Pinecil. But that’s because I’m an unrepentant open source zealot and love the idea that there’s a soldering iron running a community developed firmware. In practice though, I only used the thing a few times, and even then it was because I needed something portable. Using it at home on the workbench? It just never felt up to the task of daily use.

So when iFixit got in contact a couple weeks back and said they had a prototype USB-C soldering iron they wanted me to take a look at, I was skeptical to say the least. But then I started reading over the documentation they sent over, and couldn’t deny that they had some interesting ideas. For one, it was something of a hybrid iron. It was portable when you needed it to be, yet offered the flexibility and power of a station when you were at the bench.

Even better, they were planning on putting their money where their mouth is. The hardware was designed with repairability in mind at every step. Not only was it modular and easy to open up, but the company would be providing full schematics, teardown guides, and spare parts.

Alright, fine. Now you’ve got my attention.

Continue reading “Review: IFixit’s FixHub May Be The Last Soldering Iron You Ever Buy”

How Hot Is That Soldering Iron?

It is common these days to have a soldering iron where you can set the temperature using some sort of digital control. But how accurate is it? Probably pretty accurate, but [TheHWCave] picked up a vintage instrument on eBay that was made to read soldering iron temperature. You can see the video below, which includes an underwhelming teardown.

The device is a J thermocouple and a decidedly vintage analog meter. What’s inside? Nearly nothing. So why did the meter not read correctly? And where is the cold junction compensation?

Continue reading “How Hot Is That Soldering Iron?”

AxxSolder 3.0 Now Takes USB Power Delivery

If you’re big into the soldering iron scene, you’ve probably heard of the AxxSolder project. Now, it’s been updated with a whole host of nifty new features. It’s AxxSolder 3.0!

If you’re not intimately familiar with AxxSolder, it’s an open-source iron design based around the popular JBC soldering iron tips. Relying on the STM32G431CBT6 to run the show, it comes in two versions—a lightweight portable design, and a desktop version based around the JBC ADS soldering iron stand. So far, so familiar.

The new 3.0 version adds new functionality, however. Where the previous model ran off any old DC power source from 9 to 26 volts, the new version can run off a USB Power Delivery supply. Thus, you can grab any old USB-PD device, like a laptop charger, and run your iron off that.

The new version also uses a larger color TFT screen with some buttons added on as an improved user interface. Thermal performance is improved, and it’s additionally capable of measuring the current draw by the tip, so you can monitor the performance of the iron in great detail.

We’ve featured the AxxSolder project previously, too, along with some other great soldering iron projects. If you reckon you’ve just designed the hottest new soldering tool yourself, let us know about it!

Inside A Cordless Soldering Station

There was a time when soldering stations were unusual in hobby labs. These days, inexpensive stations are everywhere. [Kerry Wong] looks at the TS1C station, which is tiny and cordless. As he points out, cordless irons are not new, but modern battery technology has made them much more practical. However, this iron doesn’t actually have a battery.

The iron has a large 750 Farad supercapacitor. This has advantages and disadvantages. On the plus side, a supercapacitor charges quickly and doesn’t get weaker with each charging cycle like a conventional battery. On the minus side, the large capacitor makes the unit bulky compared to normal irons. [Kerry] notes that it is ergonomic, though, and he felt comfortable holding it. Also, the supercapacitor limits the amount of charge available while soldering.

It is somewhat of a balance, though. If you want to take the iron and climb a tower, you might be very interested in a longer running time. But if you return the unit to the base every few minutes, the fast charging of the cap will compensate for the lower capacity, and you’ll probably never notice it go flat.

The iron itself doesn’t display any data. The display is on the base, meaning the devices must be paired via Bluetooth. It also requires a PD-enabled USB-C connection, so you can’t just wire it to a battery. You can plug a power supply right into the iron if you prefer, but you still can’t use a simple power connection.

Of course, you assume it does an adequate job of soldering. We wanted to see inside! And [Kerry] didn’t disappoint. If you want to see soldering, skip to about the 10-minute marker. The teardown starts at around 16 minutes.

Honestly, for the bench, we’d probably stick with a wired iron. You don’t always want a base and a PD power supply for a portable iron. But if you absolutely hate cords, this could be a reasonable answer. We’ve seen another review of this iron that didn’t like the plastic casings. Maybe it is like Jedi and lightsabers: you should just build your own.

Continue reading “Inside A Cordless Soldering Station”

Open-Source Firmware For Soldering Irons

For most of us, the first soldering iron we pick up to start working on electronics has essentially no features at all. Being little more than resistive heaters plugged straight into the wall with perhaps a changeable tip, there’s not really even a need for a power switch. But doing anything more specialized than through-hole PCB construction often requires a soldering iron with a little more finesse, though. Plenty of “smart” soldering irons are available for specialized soldering needs now, and some are supported by the open-source IronOS as well.

The project, formerly known as TS100, is a versatile soldering iron control firmware that started as an alternative firmware for only the TS100 soldering iron. It has since expanded to have compatibility with several other soldering irons and hosts a rich set of features, including temperature control, motion activation, and the ability to temporarily increase the temperature when using the iron. The firmware is also capable of working with irons that use batteries as well as irons that use USB power delivery.

For anyone with a modern smart soldering iron, like the Pinecil or various Miniware iron offerings, this firmware is a great way of being able to gain fine control over the behavior of one’s own soldering iron, potentially above and beyond what the OEM firmware can do. If you’re still using nothing more than a 30W soldering iron that just has a wall plug, take a look at a review we did for the TS100 iron a few years ago to see what you’re missing out on.

Photo via Wikimedia Commons

Portable Soldering Station Runs On Drill Batteries

Power tool batteries are a convenient portable power supply for all manner of different things. [Zachary Goode] noticed that Ryobi was using them to power soldering irons, but no such tool existed in the DeWalt range. Thus, he set about to build such a rig himself.

The build relies on a simple 3D-printed adapter to suck power from a DeWalt drill battery. It’s a little piece of plastic with spade terminals inserted to act as the contacts. Armed with this tool, [Zachary] included it as part of a simple compact portable soldering iron design that relies on the off-the-shelf T12-952 controller board. This allows him to use the rig with a wide variety of common soldering iron handpieces, like his favored Hakko FX-951. The design also features a lithium-ion battery protection circuit of [Zachary]’s own design, to make up for the fact that DeWalt don’t integrate them into their battery packs.

The high power density of lithium rechargeable batteries has led to a proliferation of portable soldering irons in recent years. Some are even completely handheld, with no external wires or power supplies to speak of. If you’ve been whipping up your own gear to solder on the go, don’t hesitate to drop us a line!

Finessing A Soldering Iron To Remove Large Connectors

One of the first tools that is added to a toolbox when working on electronics, perhaps besides a multimeter, is a soldering iron. From there, soldering tools can be added as needed such as a hot air gun, reflow oven, soldering gun, or desoldering pump. But often a soldering iron is all that’s needed even for some specialized tasks as [Mr SolderFix] demonstrates.

This specific technique involves removing a large connector from a PCB. Typically either a heat gun would be used, which might damage the PCB, or a tedious process involving a desoldering tool or braided wick might be tried. But with just a soldering iron, a few pieces of wire can be soldered around each of the pins to create a massive solder blob which connects all the pins of the connector to this wire. With everything connected to solder and wire, the soldering iron is simply pressed into this amalgamation and the connector will fall right out of the board, and the wire can simply be dropped away from the PCB along with most of the solder.

There is some cleanup work to do afterwards, especially removing excess solder in the holes in the PCB, but it’s nothing a little wick and effort can’t take care of. Compared to other methods which might require specialized tools or a lot more time, this is quite the technique to add to one’s soldering repertoire. For some more advanced desoldering techniques, take a look at this method for saving PCBs from some thermal stresses.

Continue reading “Finessing A Soldering Iron To Remove Large Connectors”