3D Filament lizards show decomposable joints

Sustainable 3D Prints With Decomposable Filaments

What if you could design your 3D print to fall apart on purpose? That’s the curious promise of a new paper from CHI 2025, which brings a serious hacker vibe to the sustainability problem of multi-material 3D printing. Titled Enabling Recycling of Multi-Material 3D Printed Objects through Computational Design and Disassembly by Dissolution, it proposes a technique that lets complex prints disassemble themselves via water-soluble seams. Just a bit of H2O is needed, no drills or pliers.

At its core, this method builds dissolvable interfaces between materials like PLA and TPU using water-soluble PVA. Their algorithm auto-generates jointed seams (think shrink-wrap meets mushroom pegs) that don’t interfere with the part’s function. Once printed, the object behaves like any ordinary 3D creation. But at end-of-life, a water bath breaks it down into clean, separable materials, ready for recycling. That gives 90% material recovery, and over 50% reduction in carbon emissions.

This is the research – call it a very, very well documented hack – we need more of. It’s climate-conscious and machine-savvy. If you’re into computational fabrication or environmental tinkering, it’s worth your time. Hats off to [Wen, Bae, and Rivera] for turning what might otherwise be considered a failure into a feature.

Continue reading “Sustainable 3D Prints With Decomposable Filaments”

3D Printed TPU Bellows With PLA Interface Layers

Of all FDM filament types, flexible ones such as TPU invite a whole new way of thinking, as well as applications. Case in point the TPU-based bellows that the [Functional Part Friday] channel on YouTube recently demonstrated.

The idea is quite straightforward: you print TPU and PLA in alternating layers, making sure that the TPU is connected to its previous layer in an alternating fashion. After printing, you peel the PLA and TPU apart, remove the PLA layers and presto, you got yourself bellows.

There were some issues along the way, of course. Case in point the differences between TPU from different brands (Sainsmart, Sunlu) that caused some headaches, and most of all the incompatibility between the Bambu Lab AMS and TPU that led to incredibly brittle TPU prints. This required bypassing the feed mechanism in the AMS, which subsequently went down a rabbit hole of preventing the PTFE tube from getting sucked into the AMS. Being able to print TPU & PLA at the same time also requires a printer with two independent extruders like the Bambu Lab H2D used here, as both materials do not mix in any way. Great news for H2D and IDEX printer owners, of course.

As for practical applications for bellows, beyond printing your own 1900s-era camera, accordion or hand air bellows, you can also create lathe way covers and so on.

Continue reading “3D Printed TPU Bellows With PLA Interface Layers”

Bar of conductive filament with leds and a battery

Putting Conductive TPU To The Test

Ever pried apart an LCD? If so, you’ve likely stumbled at the unassuming zebra strip — the pliable connector that makes bridging PCB pads to glass traces look effortless. [Chuck] recently set out to test if he could hack together his own zebra strip using conductive TPU and a 3D printer.

[Chuck] started by printing alternating bands of conductive and non-conductive TPU, aiming to mimic the compressible, striped conductor. Despite careful tuning and slow prints, the results were mixed to say the least. The conductive TPU measured a whopping 16 megaohms, barely touching the definition of conductivity! LEDs stayed dark, multimeters sulked, and frustration mounted. Not one to give up, [Chuck] took to his trusty Proto-pasta conductive PLA, and got bright, blinky success. It left no room for flexibility, though.

It would appear that conductive TPU still isn’t quite ready for prime time in fine-pitch interconnects. But if you find a better filament – or fancy prototyping your own zebra strip – jump in! We’d love to hear about your attempts in the comments.

Continue reading “Putting Conductive TPU To The Test”

3D Printed Tires, By The Numbers

What does it take to make decent tires for your projects? According to this 3D printed tire torture test, it’s actually pretty easy — it’s more a question of how well they work when you’re done.

For the test, [Excessive Overkill] made four different sets of shoes for his RC test vehicle. First up was a plain PLA wheel with a knobby tread, followed by an exact copy printed in ABS which he intended to coat with Flex Seal — yes, that Flex Seal. The idea here was to see how well the spray-on rubber compound would improve the performance of the wheel; ABS was used in the hopes that the Flex Seal solvents would partially dissolve the plastic and form a better bond. The next test subjects were a PLA wheel with a separately printed TPU tire, and a urethane tire molded directly to a PLA rim. That last one required a pretty complicated five-piece mold and some specialized urethane resin, but the results looked fantastic.

Non-destructive tests on the tires included an assessment of static friction by measuring the torque needed to start the tire rolling against a rough surface, plus a dynamic friction test using the same setup but measuring torque against increasing motor speed. [Overkill] threw in a destructive test, too, with the test specimens grinding against a concrete block at a constant speed to see how long the tire lasted. Finally, there was a road test, with a full set of each tire mounted to an RC car and subjected to timed laps along a course with mixed surfaces.

Results were mixed, and we won’t spoil the surprise, but suffice it to say that molding your own tires might not be worth the effort, and that Flex Seal is as disappointing as any other infomercial product. We’ve seen other printed tires before, but hats off to [Excessive Overkill] for diving into the data.

Continue reading “3D Printed Tires, By The Numbers”

3D Printing In Custom PLA With A TPU Core

[Stefan] from CNC Kitchen explored an unusual approach to a multi-material print by making custom PLA filament with a TPU core to make it super-tough. TPU is a flexible filament whereas PLA is hard almost to the point of being brittle. The combo results in a filament with some unusual properties, inviting some thoughts about what else is possible.

Cross-section of 3D print using white PLA with a red TPU core.

[Stefan]’s video covers a few different filament experiments, but if you’d like to see the TPU-PLA composite you can skip ahead to 18:15. He first creates the composite filament by printing an oversized version on a 3D printer, then re-forming it by running it through a Recreator to resize it down to 1.75 mm.

We have seen this technique of printing custom filaments before, which is useful to create DIY multi-color filaments in small quantities right on a 3D printer’s print bed with no special equipment required. This is an effective method but results in filament with a hexagonal profile, which works but isn’t really ideal. By printing his custom composite at 4 mm diameter then resizing the filament down to 1.75 mm, [Stefan] was able to improve overall printability.

That being said, TPU and PLA have very different characteristics and don’t like to adhere to one another so the process was pretty fiddly. TPU-cored PLA might be troublesome and uncooperative to make, but it can be done with some patience and fairly simple equipment.

Despite the difficulties, test prints were pretty interesting. PLA toughness was roughly doubled and under magnification one can see a lattice of TPU strands throughout the prints which are unlike anything else. Check it out in the video, embedded below.

Continue reading “3D Printing In Custom PLA With A TPU Core”

Recreating The Pop Ball

Those who were kids in the 80s may remember a sweet little toy called the Pop Ball. A simple rubber hemisphere, this rubber cup could be turned inside out and thrown on the ground, where it would hit and bounce sky high whilst knocking itself right side out. The black ones worked particularly well, and were the first to be banned from [electrosync]’s school along with yo-yos, slap bracelets, and any number of toys that eventually became weaponized by enterprising children.

An industrial Vegemite injection-molded version that only kind of worked.

You can still find Pop Balls today, but they don’t work nearly as well as they did originally because of a lower Shore hardness in the rubber. Naturally, as an adult with futuristic toys at hand, [electrosync] just had to try re-creating the ’80s version. But it wasn’t easy.

They started by studying the patents and anything else they could find. They even managed to get a hold of Peter Fish, the original creator of the Pop Ball, to get some questions answered about the things. According to Peter, the black Pop Ball was made from recycled rubber and worked almost too well. Peter sent [electrosync] an old-stock Pop Ball, which they used to modify their CAD design.

It’s easy to root for [electrosync] throughout this journey, which consists of many failed prints and injection molding attempts. At last, they are able to at least recreate the snap of the modern Pop Ball once they finally found the right filament — the extremely elastic Recreus Filaflex 60A TPU. Of course, it wasn’t all lollipops and rainbows from there, because the filament is notoriously difficult to print with, but [electrosync] made it work. Check it out after the break.

Continue reading “Recreating The Pop Ball”

This Is The Future Of Waste Management

Many of us have been asking for some time now “where are our robot servants?” We were promised this dream life of leisure and luxury, but we’re still waiting. Modern life is a very wasteful one, with items delivered to our doors with the click of a mouse, but the disposal of the packaging is still a manual affair. Wouldn’t it be great to be able to summon a robot to take the rubbish to the recycling, ideally have it fetch a beer at the same time? [James Bruton] shares this dream, and with his extensive robotics skillset, came up with the perfect solution; behold the Binbot 9000. (Video, embedded below the break)

Continue reading “This Is The Future Of Waste Management”