The Battlefield That’s 5 KHz Wide

The airwaves are full of news from the battle in Ukraine, with TV and radio journalists providing coverage at all hours. But for those with a bit of patience there’s something else from the conflict that can be found with a radio receiver, the battle over 5 kHz of spectrum starting at 4625 kHz. This has for many years been the location on the dial for “the Buzzer“, a Russian military transmitter whose nickname describes its monotonous on/off buzzing transmission perfectly. As the current Ukrainian situation has taken shape it has become a minor battleground, and the Buzzer now shares its frequency with a variety of other stations broadcasting music, spectrograms, and other radio junk intended to disrupt it.

A spectrogram showing the wavy line of an air raid siren
The air raid siren produces a particularly distinctive spectrogram.

For the curious this can be watched unfolding on a spectrogram or through headphones by anyone within range who has an HF receiver, or for everyone else, with a WebSDR. In Western Europe it’s best listened to in hours of darkness, we suggest you consult the webSDR.org list to see which has the best signal. We’ve heard it on receivers in Poland, Russia, and the ever-reliable uTwente WebSDR in the Netherlands. Over the time we’ve been monitoring it we’ve heard overlaying speech, and music varying from the Soviet and American anthems through dance music and K-pop to 1960s British rock and of course Boney M’s Rasputin, with a few slightly macabre choices such as Final Countdown and an air raid siren. We’ve even heard TV intros from the Benny Hill Show, the A-Team and Mission Impossible, so whoever is doing this has a wide taste.

Alongside the music at about 4628kHz meanwhile we’ve watched a series of spectrogram messages scroll past in Ukrainian, Russian, and English, ranging from “Stop war” to lewd suggestions about the Russian President. It’s fair to say that none of these transmissions have obscured the Buzzer, but they have had the effect of significantly increasing the noise on the channel.

To have a listen yourself, point a receiver within range at the appropriate time of day towards 4625 kHz and select USB demodulation and a 5 kHz bandwidth. Meanwhile, for some background on the Cold War HF relics, have a read about numbers stations.

The Antonov An-225 Seems To Have Been Destroyed After All

Something that probably unites most Hackaday readers is a love of machines, particularly unique or interesting ones. In the world of aircraft for example, we’ve run several stories about those which push the edges of the size envelope, be they the Hughes Hercules troop carrier, the Scaled Composites Stratolifter space launcher, or the Antonov An-225 Mriya cargo plane. This last machine has been in the news for all the wrong reasons over the last few days, with reports emerging that it may have been destroyed in the fighting around its base at Hostomel near Kyiv. There has been some uncertainty around this news as it has alternately been claimed to have been destroyed or to have miraculously survived, but now a set of photographs have emerged showing what appears to be the An-225 burning in its damaged hangar.

The An-225 is a unique aircraft not only in the sense that there is no other model quite like it, but also because it was manufactured for the special purpose of being the transport carrier of the Soviet Union’s Buran space shuttle, and thus only one airframe was completed. Its characteristic twin tail served to avoid the turbulence that would have resulted from a Buran mounted on top of its enormous fuselage, and the six engine configuration required to move such a behemoth was in part the clue to identifying it in the photograph. Those readers who were lucky enough to see it take off or land in person will attest to its impressive physical presence, while the rest of us remain sad to have missed that chance.

It seems crass to talk about the destruction of an aircraft when compared to the scale of the unfolding tragedy in Ukraine, but we think perhaps our British and French readers who grew up with Concorde in the sky will understand the power of such a machine as a source of pride. We hope that the Antonov company will return to the design of huge cargo aircraft in peacetime, and Ukranians can again have pride in a monster aircraft that the rest of us will drive for miles just to watch taking off or landing.

The issue of which aircraft is the world’s largest can be a complex one, as we’ve explored in the past.

Header image: Vasiliy Koba, CC BY-SA 4.0.

Neon, Ukraine, And The Global Semiconductor Industry

On our news feeds and TV channels at the moment are many stories concerning the war in Ukraine, and among them is one which may have an effect on the high-tech industries. It seems that a significant percentage of the world’s neon gas is produced in Ukrainian factories, and there is concern among pundits and electronics manufacturers that a disruption of this supply could be a further problem for an industry already reeling from the COVID-related chip shortage. It’s thus worth taking a quick look at the neon business from an engineering perspective to perhaps make sense of some of those concerns.

As most readers will know from their high school chemistry lessons, neon is one of the so-called inert gasses, sitting in the column at the extreme right of the Periodic table. It occurs in nature as a small percentage of the air we breathe and is extracted from the air by fractional distillation of the liquid phase. The important point from the above sentences is that the same neon is all around us in the air as there is in Ukraine, in other words, there is no strategic neon mine in the Ukrainian countryside about to be overrun by the Russian invaders.

So why do we source so much neon from Ukraine, if we’re constantly breathing the stuff in and out everywhere else in the world? Since the air separation industry is alive and well worldwide for the production of liquid nitrogen and oxygen as well as the slightly more numerous inert gasses, we’re guessing that the answer lies in economics. It’s a bit harder to extract neon from air than it is argon because there is less of it in the air. Since it can be brought for a reasonable cost from the Ukrainians who have made it their business to extract it, there is little benefit in American or Western European companies trying to compete. Our take is that if the supply of Ukrainian neon is interrupted there may be a short period of neon scarcity. After that, air extraction companies will quite speedily install whatever extra plant they need in order to service the demand. If that’s your area of expertise, we’d love to hear from you in the comments.

Here at Hackaday we are saddened beyond words at what has happened in Ukraine, and we hope our Ukrainian readers and those Ukrainian hackers whose work we’ve featured make it through safely. We sincerely hope that this madness can be ended and that we can mention the country in the context of cool hacks again rather than war.

If you are interested in the strategic value of inert gasses, have a read about the global helium supply.

Header image: Lestat (Jan Mehlich), CC BY-SA 3.0.

Hackaday Links Column Banner

Hackaday Links: February 6, 2022

Last week, the news was filled with stories of Jack Sweeney and his Twitter-bot that tracks the comings and goings of various billionaires in their private jets. This caught the attention of the billionaire-iest of them all, one Elon Musk, who took exception to the 19-year-old’s feat of data integration, which draws from a number of public databases to infer the location of Elon’s plane. After Jack wisely laughed off Elon’s measly offer of $5,000 to take the bot down, Elon ghosted him — pretty childish behavior for the richest man on the planet, we have to say. But Jack might just have the last laugh, as an Orlando-based private jet chartering company has now offered him a job. Seems like his Twitter-bot and the resulting kerfuffle is a real resume builder, so job-seekers should take note.

Here’s hoping that you have a better retirement plan than NASA. The space agency announced its end-of-life plans for the International Space Station this week, the details of which will just be a run-up to the 2031 de-orbit and crash landing of any remaining debris into the lonely waters of Point Nemo. The agency apparently sees the increasingly political handwriting on the ISS’s aging and sometimes perforated walls, and acknowledges that the next phase of LEO space research will be carried out by a fleet of commercial space stations, none of which is close to existing yet. Politics aside, we’d love to dig into the technical details of the plan, and see exactly what will be salvaged from the station before its fiery demise, if anything. The exact method of de-orbiting too would be interesting — seems like the station would need quite a bit of thrust to put on the brakes, and might need the help of a sacrificial spacecraft.

“You break it, you fix it,” is a philosophy that we Hackaday types are probably more comfortable with than the general public, who tend to leave repairs of broken gear to professionals. But that philosophy seems to be at the core of Google’s new Chromebook repair program for schools, which encourages students to fix the Chromebooks they’re breaking in record numbers these days. Google is providing guidance for schools on setting up complete Chromebook repair facilities, including physical layout of the shop, organization of workflows, and complete repair information for at least a couple of popular brands of the stripped-down laptops. Although the repairs are limited to module-level stuff, like swapping power supplies, we still love the sound of this. Here’s hoping that something like this can trigger an interest in electronics for students that would otherwise never think to open up something as complicated as a laptop.

Back in July, we took note of a disturbing report of an RTL-SDR enthusiast in Crimea who was arrested for treason, apparently based on his interest in tracking flights and otherwise monitoring the radio spectrum. Now, as things appear to be heating up in Ukraine again, our friends at RTL-SDR.com are renewing their warning to radio enthusiasts in the area that there may still be risks. Then as now, we have little interest in the politics of all this, but in light of the previous arrest, we’d say it pays to be careful with how some hobbies are perceived.

And finally, aside from the aforementioned flight-tracking dustup, it’s been a tough week for Elon and Tesla. Not only have 817,000 of the expensive electric vehicles been recalled over something as simple as a wonky seatbelt chime, but another 54,000 cars are also being recalled for a software bug that causes them to ignore stop signs in “Full Self-Driving” mode. We’re not sure if this video of this Tesla hell-ride has anything to do with that bug, but it sure illustrates the point that FSD isn’t really ready for prime time. Then again, as a former Boston resident, we can pretty safely say that what that Tesla was doing isn’t really that much different than the meat-based drivers there.

The Russian Woodpecker: Official Bird Of The Cold War Nests In Giant Antenna

On July 4th, 1976, as Americans celebrated the country’s bicentennial with beer and bottle rockets, a strong signal began disrupting shortwave, maritime, aeronautical, and telecommunications signals all over the world. The signal was a rapid 10 Hz tapping that sounded like a woodpecker or a helicopter thup-thupping on the roof. It had a wide bandwidth of 40 kHz and sometimes exceeded 10 MW.

This was during the Cold War, and plenty of people rushed to the conclusion that it was some sort of Soviet mind control scheme or weather control experiment. But amateur radio operators traced the mysterious signal to an over-the-horizon radar antenna near Chernobyl, Ukraine (then part of the USSR) and they named it the Russian Woodpecker. Here’s a clip of the sound.

The frequency-hopping Woodpecker signal was so strong that it made communication impossible on certain channels and could even be heard across telephone lines when conditions were right. Several countries filed official complaints with the USSR through the UN, but there was no stopping the Russian Woodpecker. Russia wouldn’t even own up to the signal’s existence, which has since been traced to an immense antenna structure that is nearly half a mile long and at 490 feet, stands slightly taller than the Great Pyramid at Giza.

This imposing steel structure stands within the irradiated forest near Pripyat, an idyllic town founded in 1970 to house the Chernobyl nuclear plant workers. Pictured above is the transmitter, also known as Duga-1, Chernobyl-2, or Duga-3 depending on who you ask. Located 30 miles northeast of Chernobyl, on old Soviet maps the area is simply labeled Boy Scout Camp. Today, it’s all within the Chernobyl Exclusion Zone.

It was such a secret that the government denied it’s existence, yet was being heard all over the world. What was this mammoth installation used for?

Continue reading “The Russian Woodpecker: Official Bird Of The Cold War Nests In Giant Antenna”

Possibly The Most Up-Cycled, Hacked E-Bike You’ll See All Week

When it comes to bringing an idea to life it’s best to have both a sense of purpose, and an eagerness to apply whatever is on hand in order to get results. YouTube’s favorite Ukrainians [KREOSAN] are chock full of both in their journey to create this incredible DIY e-bike using an angle grinder with a friction interface to the rear wheel, and a horrifying battery pack made of cells salvaged from what the subtitles describe as “defective smartphone charging cases”.

Battery pack made from cells salvaged out of defective equipment. Sometimes, you use what you have on hand.

What’s great to see is the methodical approach taken to creating the bike. [KREOSAN] began with an experiment consisting of putting a shaft on the angle grinder and seeing whether a friction interface between that shaft and the tire could be used to move the rear wheel effectively. After tweaking the size of the shaft, a metal clamp was fashioned to attach the grinder to the bike. The first test run simply involved a long extension cord. From there, they go on to solve small problems encountered along the way and end up with a simple clutch system and speed control.

The end result appears to work very well, but the best part is the pure joy (and sometimes concern) evident in the face of the test driver as he reaches high speeds on a homemade bike with a camera taped to his chest. Video is embedded below.

Continue reading “Possibly The Most Up-Cycled, Hacked E-Bike You’ll See All Week”

FANCY BEAR Targets Ukrainian Howitzers

Just in case you’re one of the people out there who still doesn’t believe in “the cyber” — it appears that the Russian military served malicious cell-phone apps to the Ukrainian army that allowed them to track a particular artillery cannon.

The legitimate version of the Android app helped its operator use the 1960’s-era former Soviet howitzer. The trojanized version of this application did just the same, except it also phoned home to Russian military intelligence with its location. In addition to giving the Russian army valuable information about troop movements in general, it also led to the destruction of 80% of the cannons in question over two years.

The cited article goes into depth about how certain it is that a hacking group, referred to as FANCY BEAR, are nearly certainly responsible for the attack. The exploit has fingerprints that are not widely known outside of the security research community, and the use of the exploit against the Ukrainian army pretty much ties FANCY BEAR to the Russian military.

This is also the same exploit that was used against the Democratic National Committee in the United States. Attribution is one of the hardest parts of white-hat hacking — attackers don’t want to be found and will leave misleading clues when they can — but the use of the same proprietary malware in these two attacks is pretty convincing evidence that Russian military intelligence has also hacked into US political parties and NGOs.

(Banner image by Vitaly Kuzmin, CC-BY-SA 3.0.)