Serial Data from the Web to an Arduino

In the old days, a serial port often connected to an acoustic coupler that gripped a phone handset and allowed a remote connection to a far away serial port (via another phone and acoustic coupler) at a blistering 300 baud or less. The acoustic coupler would do the job of converting serial data to audio and reconstituting it after its trip through the phone lines. Modems advanced, but have mostly given way to DSL, Cable, Fiber, and other high speed networking options.

In a decidedly retro move, [James Halliday] and [jerky] put a modern spin on that old idea. They used the webaudio API to send serial data to a remote Arduino. The hack uses a FET, a capacitor, and a few resistors. They didn’t quite build a real modem with the audio. Instead, they basically spoof the audio port into sending serial data and recover it with the external circuitry. They also only implement serial sending (so the Arduino receives) so far, although they mention the next step would be to build the other side of the connection.

Continue reading “Serial Data from the Web to an Arduino”

BOO! Teach Arduino Basics With this Fun Ghost

Halloween is just around the corner, and the spooky themed tips are just starting to roll in. If you’re looking to one-up the basic store-bought decorations, and maybe teach your kid the basics of an Arduino while you’re at it — why not build a Peek-A-Boo Ghost!

Using an Arduino, two servo motors and an ultrasonic distance sensor it’s pretty easy to make this cute little ghost that covers its eyes when no one is around. They’re using cardboard for the ghost, but if you have access to a laser cutter at your hackerspace, you could make it a lot more robust using MDF or plywood.

When the ultrasonic distance sensor senses someone coming towards it, it’ll trigger the arms to move — though it’d be easy to add a small speaker element too and get some spooky music going as well!

Continue reading “BOO! Teach Arduino Basics With this Fun Ghost”

The Arduino Birthday Cake is No Lie

Making someone a birthday cake is very thoughtful, but not if they are watching their weight. [MrFox] found a way around that: an Arduino-powered birthday cake. Even if you don’t mind the calories, an Arduino cake is a novelty and sure to be a hit with a hacker who’s another year older.

The cake uses a UTFT LCD shield which eats up a lot of pins and memory, so the project uses an Arduino Mega. A speaker plays the happy birthday song (which may even be legal now) while a microphone detects the birthday boy or girl blowing out the virtual candles.

Continue reading “The Arduino Birthday Cake is No Lie”

Arduino’s Long-Awaited Improved WiFi Shield

Announced at the 2014 Maker Faire in New York, the latest Arduino WiFi shield is finally available. This shield replaces the old Arduino WiFi shield, while providing a few neat features that will come in very handy for the yet-to-be-developed Internet of Things.

While the WiFi Shield 101 was announced a year ago, the feature set was interesting. The new WiFi shield supports 802.11n, and thanks to a few of Atmel’s crypto chip offerings, this shield is the first official Arduino offering to support SSL.

The new Arduino WiFi Shield 101 features an Atmel ATWINC1500 module for 802.11 b/g/n WiFi connectivity. This module, like a dozen or so other WiFi modules, handles the heavy lifting of the WiFi protocol, including TCP and UDP protocols, leaving the rest of the Arduino free to do the actual work. While the addition of 802.11n  will be increasingly appreciated as these networks become more commonplace, the speed offered by ~n isn’t really applicable; you’re not going to be pushing bits out of an Arduino at 300 Mbps.

Also included on the WiFi shield is an ATECC508A CryptoAuthentication chip. This is perhaps the most interesting improvement over the old Arduino WiFi shield, and allows for greater security for the upcoming Internet of Things. WiFi modules already in the space have their own support for SSL, including TI’s CC3200 series of modules, Particle‘s Internet of Things modules, and some support for the ESP8266.

Arduino Development; There’s a Makefile for That

Hardware and software combined, Arduino does many things right. It lowers the entry level into embedded systems development with a nifty hardware abstraction layer. It aims for cross-platform compatibility by supporting Windows, Mac OSX, and Linux operation systems. It throws out the need for an external programmer to get you up-and-blinkin’ those LEDs quickly.

One thing most of us never cease to curse about, though, is the IDE. Many have cried out wildly against the Java-based text-editor for its cryptic compiling-and-linking process, its inability to accommodate bare C or C++ source files, and (shh!) its lack of Vim keybindings. Fortunately, our cries have been heard, and the like many community-based projects, the community fights back with a custom solution.

Calling all Grumpy Engineers: The Arduino-Makefile

Enter the Arduino Makefile.

What began as [Sudar’s] lightweight program to escape the IDE has become a fully-blown, feature rich Makefile that has evolved and adapted to grow with the changes of Arduino. With a community of 47 contributors, the Makefile enables you to escape from the IDE entirely by writing code in the cushy text editor of your choice and compiling with a simple incantation of make into your terminal, be you in Linux, Mac, or Windows.

Without further ado, let’s take a walking tour of the project’s highlights.

Continue reading “Arduino Development; There’s a Makefile for That”

Arduino Teaches Morse Code

You may wonder why anyone would want to learn Morse code. You don’t need it for a ham license anymore. There are, however, at least three reasons you might want to learn it anyway. First, some people actually enjoy it either for the nostalgia or the challenge of it. Another reason is that Morse code can often get through when other human-readable schemes fail. Morse code can be sent using low power, equipment built from simple materials or even using mirrors or flashlights. Finally, Morse code is a very simple way to do covert communications. If you know Morse code, you could privately talk to a concealed computer on just two I/O lines. We’ll let you imagine the uses for that.

In the old days, you usually learned Morse code from an experienced sender, by listening to the radio, or from an audio tape. The state of the art today employs a computer to randomly generate practice text. [M0TGN] wanted a device to generate practice code, so he built it around an Arduino. The device acts like an old commercial model, the Datong D70, although it can optionally accept an LCD screen, something the D70 didn’t have.

You can see the project in operation in the video below. Once you learn how to read Morse code, you might want to teach your Arduino to understand it, too. Or, you can check out some other Morse-based projects.

Continue reading “Arduino Teaches Morse Code”

Retro Games on ArduinoCade Just Shouldn’t Be Possible

Making retro video games on today’s micro controllers brings many challenges, especially when using only the micro controller itself to handle the entire experience. Complex graphics, sound, game logic and input is taxing enough on the small chips, toss in NTSC color graphics and you have a whole different bear on your hands.

[rossum] set out making the Arduinocade retro game system using an overclocked Arduino Uno, and not much more. Supporting 4 voice sound and IR game controllers, the system also boasts 27 simultaneous colors all in software. These colors and the resolution feel like they’re impossible without a graphics chip to offload some of the work. While doing all of this the ATmega328p is also playing some faithful reproductions of classic arcade games.

The uses a couple of interesting tricks. Color is generated with NTSC color artifacts, where the screen is really black and white, but thanks to a delay or two in the signal generation the bits are out of phase from the reference “color burst” signal and appear on-screen as unique colors. This approach was used in the 8 bit Apple II personal computers to generate its colors, and also on the early IBM PC’s with CGA cards to drastically increase color depth. In this case, the chip is overclocked with a 28.6363 MHz crystal (a multiple of NTSC timing) and the SPI hardware leveraged to shift out all the necessary pixels. Check out how great it looks and sounds after the break.

It’s good to see an old trick on a new project and we are off to play some games!

Continue reading “Retro Games on ArduinoCade Just Shouldn’t Be Possible”