Arduino Gear Shift Indicator Finds ‘Em So You Won’t Grind ‘Em

Now, it’s been a shamefully long time since we’ve driven a car with a manual transmission, but as we recall it was pretty straightforward. It certainly didn’t require a lot of help with the shifting pattern, at least not enough to require a technical solution to know what gear you’re in. But then again, we suspect that’s not really the point of [upir]’s latest build.

Oh sure, it’s pretty cool to display your current gear selection on a little LCD screen using an Arduino. And [upir] promises a follow-up project where the display goes inside the shifter knob, which will be really cool. But if you take a look at the video below, you’ll see that the real value of this project is the stepwise approach he takes to create this project. [upir] spends most of the time in the video below simulating the hardware and the code of the project in Wokwi, which lets him make changes and tune the design up before committing anything to actual hardware.

That turned out to be particularly useful with this build since he chose to use analog Hall sensors to detect the shift lever position and didn’t know exactly how that would work. Wokwi let him quickly build a virtual prototype for one sensor (using a potentiometer as a stand-in, since the simulator lacked a Hall sensor model), then quickly expand to the four sensors needed to detect all six gear positions.

By the time his simulation was complete, the code was almost entirely written. [upir] also walks us through his toolchains for both designing the graphics and laying out the PCB, a non-trivial task given the odd layout. We particularly enjoyed the tip on making smooth curved traces around the oval cutout for the shift lever in the board.

The video below is on the longish side, but it’s chock full of great little tips. Check out some more of [upir]’s work, like his pimped-out potentiometer or his custom animations on 16×2 LCDs.

Continue reading “Arduino Gear Shift Indicator Finds ‘Em So You Won’t Grind ‘Em”

EV Sales Sticking Point: People Still Want Manual Transmissions

Call me crazy, but I’m ride or die for manual transmissions. I drove enough go-karts and played enough Pole Position as a kid to know that shifting the gears yourself is simply where it’s at when it comes to tooling around in anything that isn’t human-powered. After all, manuals can be roll-started. A driver has options other than braking and praying on slippery roads. Any sports car worth its rich Corinthian leather (or whatever) has a manual transmission, right? And you know that Rush’s Red Barchetta ain’t no automatic. Face it, shifting gears is just plain cooler. And it’s not a chore if it gets you more, although the fuel efficiency thing is a myth at this point.

You can imagine then my horror at the idea that someday within my lifetime, most cars will be twist-and-go electric go-karts. As the age of the combustion engine appears to draw to a close (no, seriously this time), there’s just one thing keeping the door open — marked enthusiasm for manual transmissions. From Audi to the Nissan Z, automakers report that the take rate for manual transmissions is quite high in the US, despite the death knell that has been tolling for two decades or so. Two models of Honda Civic are manual-only. This phenomenon isn’t restricted to sports cars, either — the 2022 Ford Bronco comes in a seven-speed manual, and has seen a take rate over 20%.

Continue reading “EV Sales Sticking Point: People Still Want Manual Transmissions”

Four On The Floor For Your Virtual Race Car

There was a time when building realistic simulations of vehicles was the stuff of NASA and big corporations. Today, many people have sophisticated virtual cockpits or race cars that they use with high-resolution screens or even virtual reality gear. If you think about it, a virtual car isn’t that hard to pull off. All you really need is a steering wheel, a few pedals, and a gear shifter. Sure, you can build fans to simulate the wind and put haptics in your seat, but really the input devices alone get you most of the way there. [Oli] decided he wanted a quick and easy USB gear shifter so he took a trip to the hardware store, picked up an arcade joystick, and tied it all together with an Arduino Leonardo. The finished product that you can see in the video below cost about $30 and took less than six hours to build.

The Leonardo, of course, has the ability to act like a USB human interface device (HID) so it can emulate a mouse or a keyboard or a joystick. That comes in handy for this project, as you would expect. The computer simply has to read the four joystick buttons and then decide which gear matches which buttons. For example up and to the left is first gear, while 4th gear is only the down button depressed. A custom-cut wooden shifter plate gives you the typical H pattern you expect from a stick shift.

Continue reading “Four On The Floor For Your Virtual Race Car”

Hackaday Podcast 066: The Audio Overdub Episode; Tape Loop Scratcher, Typewriter Simulator, And Relay Adder

Hackaday editors Elliot Williams and Mike Szczys stomp through a forest full of highly evolved hardware hacks. This week seems particularly plump with audio-related projects, like the thwack-tackular soldenoid typewriter simulator. But it’s the tape-loop scratcher that steals our hearts; an instrument that’s kind of two-turntables-and-a-microphone meets melloman. We hear the clicks of 10-bit numbers falling into place in a delightful adder, and follow it up with the beeps and sweeps of a smartphone-based metal detector.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 066: The Audio Overdub Episode; Tape Loop Scratcher, Typewriter Simulator, And Relay Adder”

Sticking Up For The Stick Shift

It seems that stick shift has become a sticking point, at least for American car buyers. Throughout 2019, less than 2% of all the cars sold in the US had a manual transmission. This sad picture includes everything from cute two-seater commuters to — surprisingly enough —  multi-million dollar super cars built for ultimate performance.

But aside from enthusiasts like myself, it seems no one cares too much about this shift away from manual transmissions. According to this video report by CNBC (embedded below), the fact that demand is in free-fall suggests that Americans on the whole just don’t enjoy driving stick anymore. And it stands to reason that as more and more people live their lives without learning to drive them, there would be a decline in the number of teachers and proponents. It’s a supply and demand problem starring the chicken and the egg.

But giving up the stick is one more example of giving up control over the vehicle. It’s not something everyone cares about, but those that do care a lot. Let’s grind through the ebb and flow of the manual transmission — more lovingly called the stick shift.

Continue reading “Sticking Up For The Stick Shift”

Titanium Knob Doesn’t Grind Our Gears

Manual transmissions! Those blessed things that car enthusiasts swear by and everyone else pretends no longer exists. They’re usually shifted by using the gearstick, mounted in the centre console of the car. Swapping out the knob on the gearstick is a popular customization; you can have everything from 8-balls to skulls, to redback spiders mounted in epoxy, sitting proud atop your gearstick. It’s rare to see anything new under the sun, but [John Allwine] came up with something we’d never seen before.

[John]’s design leans heavily on the unique ability of additive manufacturing to produce complex hollow geometries that are incredibly difficult or impossible to produce with traditional subtractive methods. The part was designed in CAD software, and originally printed on a Makerbot in plastic. After this broke, it was decided to instead produce the part in stainless steel using Shapeway’s custom order process. You can even buy one yourself. This is a much smarter choice for a part such as a gearknob which undergoes heavy use in an automotive application. The part is printed with threads, but due to the imperfect printing process, these should be chased with a proper tap to ensure good fitment.

The design was eyecatching enough to grab the attention of a professional engineer from a 3D printing company, who worked with [John] to make the part out of titanium. It’s a very tough and hardy material, though [John] notes it was an arduous task to go about tapping the threads because of this.

It’s a great example of what can now be achieved with 3D printing technology. No longer must we settle for plastic – through services like Shapeways, it’s now possible to 3D print attractive metal parts in complex designs! And, if you’ve got the right friends, you can even step it up to titanium, too.

We’ve seen other takes on the 3D shifter handle, too – like this head.

 

Retrotechtacular: We’re Gonna Have Manual Transmissions The Way My Old Man Told Me!

archimedesSimple machines are wonderful in their own right and serve as the cornerstones of many technological advances. This is certainly true for the humble lever and the role it plays in manual transmissions as evidenced in this week’s Retrotechtacular installment, the Chevrolet Motor Company’s 1936 film, “Spinning Levers”.

This educational gem happens to be a Jam Handy production. For you MST3K fans out there, he’s the guy behind shorts like Hired! from the episodes Bride of the Monster and the inimitable Manos: The Hands of Fate. Hilarity aside, “Spinning Levers” is a remarkably educational nine-ish minutes of slickly produced film that explains, well, how a manual transmission works. More specifically, it explains the 3-speed-plus-reverse transmissions of the early automobile era.

It begins with a nod to Archimedes’ assertion that a lever can move the world, explaining that the longer the lever, the better the magic. In a slightly different configuration, a lever can become a crank or even a double crank. Continuous motion of a lever or series of levers affords the most power for the least work, and this is illustrated with some top-drawer stop motion animation of two meshing paddle wheels.

gearsNext, we are shown how engine power is transferred to the rear wheels: it travels from a gear on the engine shaft to a gear on the drive shaft through gears on the countershaft. At low speeds, we let the smallest gear on the countershaft turn the largest gear on the drive shaft. When the engine is turning 90 RPM, the rear wheel turns at 30 RPM. At high speeds using high gears, the power goes directly from the engine shaft to the drive shaft and the RPM on both is equal. The film goes on to explain how the gearbox handles reverse, and the vast improvements to transmission life made possible through synchromesh gearing.

Continue reading “Retrotechtacular: We’re Gonna Have Manual Transmissions The Way My Old Man Told Me!”