Review: DSLogic Logic Analyzer

Logic analyzers historically have been the heavy artillery in an engineer’s arsenal. For many of us, the name invokes mental images of large HP and Tektronix iron with real CRT screens. Logic connections were made through pods, with hundreds of leads weaving their way back to the test equipment. The logic analyzer came out when all else failed, when even a four channel scope wasn’t enough to figure out your problems. Setting them up was a pain – if you were lucky, the analyzer had a PC keyboard interface. If not, you were stuck typing your signal names into the front panel keyboard. Once setup though, logic analyzers were great at finding bugs. You can see things you’d never see with another tool – like a data bus slowly settling out after the read or write strobe.

There have been a number of USB based logic analyzers introduced in recent years, but they didn’t really catch on until Saleae released their “Logic” line of devices. Low cost, high-speed, and easy to use – these devices were perfect. They also inspired an army of clone devices based upon the same Cypress Semiconductor parts. DSLogic designed by DreamSource Labs, can be thought of as an open source evolution of the original Saleae device.

DSLogic appeared in 2013 as a Kickstarter campaign for an open source logic analyzer with an optional oscilloscope extension. I think it’s safe to say that they did well, raising $111,497 USD, more than 10 times their initial goal of $10,000 USD. These days both the DSLogic and the oscilloscope extension are available at The Hackaday Store. In this review we’re focusing on the logic analyzer portion of the tool. 

Click past the break for the full story!

Continue reading “Review: DSLogic Logic Analyzer”

Hacklet 48 – Weather Sensing Projects

Throughout history, mankind has been at the mercy of the weather. Planning a major outdoor event like a wedding or a naval battle? Better hope for clear skies! Man doesn’t have the ability to change mother nature at will quite yet, but hackers are working on it! Until then, we can measure  the current conditions and predict the weather in the near future. A bit of help from cloud based computer models and global sensing even allows us to model and predict weather patterns days in advance. It’s no surprise that makers, engineers, and hackers love weather projects. We’ve found there are two basic project groups (with a some overlap between them): Sensing projects and display projects. This week’s hacklet focuses on some of the best weather sensing projects on!

aneWe start with [diysciborg] and Modular Weather Station. This 2014 Hackaday Prize entrant is a DIY outdoor weather station. [diysciborg] went with easily available PVC pipe and sheet metal for most of his mechanical build. His anemometer alone is a work of art. Mounting 8 magnetic reed switches in slots cut in a PCB allows for a thin device which can easily sense the speed of the wind. Other sensors include a TLS230R light to frequency converter for sunlight measurement, CO, wind direction, and more. An Arduino Pro Mini is at the center of it all.

facil[Clovis Fritzen] is saving the planet from global warming with his project FacilTempo. FacilTempo is a weather station, and an entry in the 2015 Hackaday Prize. The idea is to make a simple and low-cost setup which can be built in bulk and placed anywhere on the Earth. [Clovis] plans to measure temperature, humidity, atmospheric pressure, sunlight, and rain. He also hopes to add a Sparkfun sensor to monitor wind speed and direction. All the data will be transmitted via a radio link. [Clovis] is adding the ability for FacilTemp to communicate via 433 MHz, WiFi, or Bluetooth. The entire sensor suite and its on-board ATmega328 will be powered by a LiPo battery. The battery will be charged by solar or wind power, depending upon what is available on site. With 8 project logs already in the can, FacilTempo is well on its way to beating back global warming!

lcw[Ulf Winberg] is building the Low Cost Weather Station, his entry in the 2015 Hackaday Prize. Low Cost Weather Station aims to be a $50 sensor suite for local weather conditions. [Ulf] plans to power the entire device using wind and solar energy. He’s hoping to avoid batteries by storing his power in a supercapacitor. Power calculations have been taking up quite a bit of his design time so far. The $50 bill of materials limit is one that [Ulf] is serious about. He’s keeping careful eye on his component selections to keep that goal attainable. The system will transmit wind speed, wind direction, sun, and other data through a Laird BL600 Bluetooth low energy transceiver.

zetaFinally we have [Greg Miller] taking it back to basics with Weather Station Zeta. Zeta is [Greg’s] first big project. He’s only just recently learned to solder, but he’s already squeezing a lot of performance out of a little Arduino. The idea is to create a two station system. The outdoor station will monitor the weather, including temperature, humidity, and barometric pressure. Data will be transmitted to an indoor station with a similar set of sensors. The indoor station will also include a 20 line x 4 column character LCD to display the data.  [Greg] has the indoor section of the system just about done, and he’s working on learning the ins and outs of XBee data radios. He’s also going to include an Adafriut CC3000 breakout board to Web enable the weather station. We love seeing ambitious early projects like this one!

If you want to see more projects like these, check the Weather Sensing Projects list on 

That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of!

Caption CERN Contest – Not your father’s POV Display

Accidents happen – but the awesome quotes you all sent in for Week 15 of the Caption CERN Contest were no accident. A huge thank you for our biggest week yet! The scientists in this week’s image are definitely cleaning up after some type of nasty accident. At first blush it looks like an electrical problem in the coils of what appears to be part of a beam line. With all that soot and radiation dangers to boot, only the photographer and the people in the image know for sure!

The Funnies:

  • “This is the second server these idiots have fried! What the hell’s a Hulu, and why are they trying to watch Gilligan’s Island with it?” Thanks to some unplanned quantum tunneling, Berners-Lee was even further ahead of his time than he thought” – [The Green Gentleman] (Two weeks in a row!)
  • “I found the bug. Who gets to tell Joe he’s sterile?”- [jonsmirl]
  • “‘I told the Captain that she couldn’t take any more’ – Scotty” – [md_reeves]

The winner for this week is [Mr. mmWave] himself, [Tony Long] with “Hardware Accelerator moto – Fail Fast, Fail Often. Also applies to Accelerator Hardware.” [Tony] will be debugging his next microwave mm band ham radio with a Logic Pirate From The Hackaday Store! Congratulations [Tony]!

Week 16: This is not your father’s POV Display!

cern-16-smScientists at CERN have come up with some amazing science advancements. They’ve also needed ways to display the data they collect. This image may depict some incredible new way to display data collected from a high power physics experiment – or it could be a scientist’s project for the CERN science fair. We may never know.

The album is titled CHAMBRE A ETINCELLES DANS EXPO TECHNOL, which roughly translates to “Sparks in the technology expo room”. The lines traveling between the three horizontal display devices definitely appear to be aligned. Are they sparks of electricity? You tell us!

buspirate2Last week’s prize was a Logic Pirate. This week we’re giving away a Bus Pirate from The Hackaday Store.

Add your humorous caption as a comment to this project log. Make sure you’re commenting on this contest log, not on the contest itself.

As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Good Luck!

Articulated Computer Lamp Lights up your life

[Samimy] raided his parts bin to build this articulated lamp (YouTube link) for his computer workstation. Two pieces of aluminum angle form the main body of the lamp. Several brackets are used to form two hinges which allow the lamp to be positioned above [Samimy’s] monitor. The light in this case comes from a pair of 4 watt LED bulbs.

[Samimy] used double nuts on the moving parts to make sure nothing comes loose. The outer nuts are acorns, which ensure no one will get cut on an exposed bit of threaded rod. [Samimy] wired the two bulbs up in a proper parallel mains circuit. The switch is a simple toggle mounted in a piece of Plexiglass on the end of the lamp.

One thing we would like to see on this build is a ground wire. With all that exposed aluminum and steel, one loose connection or worn bit of insulation could make the entire lamp body live.

Continue reading “Articulated Computer Lamp Lights up your life”

Hacklet 47 – Thermal Imaging Projects

Thermal imaging is the science of converting the heat signature of objects to an image visible to humans. Everything above absolute 0 gives off some heat, and thermal imagers allow us to see that – even if there is no visible light in the room. Historically, thermal imaging systems have been large and expensive. Early systems required liquid nitrogen cooling for their bolometer sensors. Recent electronic advances have brought the price of a thermal image system from the stratosphere into the sub $300 range – right about where makers and hackers can jump in. That’s exactly what’s happened with the Flir Lepton module and the Seek Thermal camera. This week’s Hacklet is all about thermal imaging projects on!

We start with [Pure Engineering] and Flir Lepton Thermal Camera Breakout. Flir’s Lepton thermal camera created quite a stir last year when it debuted in the Flir One thermal iPhone camera. The Lepton module used in the Flir One is a great standalone unit. Interfacing only requires an I2C interface for setup and an SPI interface for image data transfer. Actually using the Lepton is a bit more of a challenge, mainly because of its packaging. [Pure Engineering] made a simple breakout board which makes using the Lepton easy. It’s also breadboard compatible – which is a huge plus in the early phases of any project.


grideyeNext up is [AKA] with GRID-EYE BLE-capable thermal camera. This project is a Bluetooth low energy (BLE) thermal camera using Panasonic’s Grid-EYE 64 pixel thermal sensor. 64 pixels may not sound like much, but an 8×8 grid is enough data to see quite a bit of temperature variation. If you don’t believe it, check the project page for a video of [AKA] using Grid-EYE’s on-board OLED display. Grid-EYE was a Hackaday Prize 2014 semifinalist, and we featured a bio on [AKA] last year. The only hard part with building your own Grid-EYE is getting the sensor itself. Panasonic doesn’t sell them to just anyone, so you might have to jump through a few hoops to get your own.


pylepton[Kurt Kiefer] brought the FLIR Lepton to the Raspberry Pi with pylepton video overlay. This project uses the Lepton to overlay thermal data with images captured by the Raspbery Pi camera module. The Lepton interfaces through the I2C and SPI ports on the Pi’s GPIO pins. The results are some ghostly images of black and white thermal views over color camera images – perfect for your next ghost hunting expedition!  The entire project is implemented in Python, so it’s easy to import and use pylepton in your own projects. [Kurt] even gives an example of capturing an image with just 5 lines of code. Nice work, [Kurt]!



wificamFinally we have [Erik Beall] with WiFi Thermal Camera. [Eric] is using an 82×62 diode array to create thermal images. Unlike microbolometer sensors, diode/thermopile sensors don’t need constant calibration. They also are sturdier than Microelectricomechanical System (MEMS) based devices. This particular project users an array from Heimann Sensor. As the name implies, the sensor is paired with a WiFi radio, which makes using it to capture and display data easy. [Erik] must be doing something right, as WiFi Thermal Camera just finished a very successful Kickstarter, raising $143,126 on a $40,000 initial goal.

Are you inspired? A thermal imager can be used to detect heat loss in buildings, or heat generated by electrical faults – which means it would be a great project for the 2015 Hackaday Prize! If you want to see more thermal imaging projects, check out the thermal imaging projects list!

That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of!


Week 14’s image may have had us at a loss for words, but it definitely didn’t slow down the intrepid caption contest entrants on! Thanks to everyone who entered. We still have no idea what that device is, though we are sure that we wouldn’t want to be standing under it. Just look at those 4×4 sections of lumber holding everything up. What’s the French translation for “sketchy as hell”? The device definitely includes a pressure or vacuum vessel of some sort. Beyond that, your guess is as good as ours. We’ll keep an eye on CERN’s image discussion page in case an answer does pop up.

The Funnies:

  • “Damn it Athol, stop harping about protocol and hand me the duck tape. This is nuclear physics, not rocket science!” – [The Green Gentleman]
  • “This will mix a mean Margarita for the party tomorrow, I promise you!.”- [Mats L]
  • “To long have we tried to smash particles, now we will blend them.” – [paul]

The winner for this week is [LongHairedHacker] with: “After weeks of complicated assembly the team finally found out that the IKEA Årc, was in fact not a fusion reactor. It did make a hell of an espresso though.”

As promised, [LongHairedHacker] will be taking home a Bus Pirate From The Hackaday Store!Congratulations!

Week 15

cern-15-smAccidents happen! When you’re working on the bleeding edge of science and technology, things don’t always go as planned. In this image, we’re looking at what appears to be the result of some sort of failure. We’re not sure what the piece of equipment was, but “was” is the proper term – as it’s now charred to a crisp.

The two scientists investigating the damage don’t seem to be worried about the radiation warning posted on the end of the machine’s aperture. Hopefully they know what they’re doing! 

Last week’s prize was a Bus Pirate. This week we’re giving away another Dangerous Prototypes design, a Logic Pirate from The Hackaday Store.


Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself.

As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Good Luck!


Direction Projection is a beacon in the night

Navigating with your phone can be a hassle: the phone displays a tiny map that you’re never supposed to look at while driving, but of course you do. [Mikeasaurus] has the ultimate solution: Direction Projection! Mike has created an augmented reality system with no glass heads-up display, and no goggles ala Microsoft Hololens. The road ahead is his canvas. A standard projector mounted atop his car displays maps and turn indicators, all from his phone. Linking the phone and projection system would normally involve HDMI or analog video cables strung through the roof. [Mikeasaurus] simplifies that by using a Chromecast, which allows him to stream his phone’s screen over WiFi.

rooftop2The projector itself is the HD25-LV, a 3500 Lumen model from Optima. the HD25-LV is capable of 1080p, though in this situation, brightness is much more important than resolution. [Mikeasaurus] mounted the projector along with a gel cell battery and 900 watt DC to AC  inverter to power it. A mobile WiFi hotspot fills out the rooftop kit. Leaving an expensive setup like that on top of a car is a recipe for disaster – be it from rain, rocks, or theft. [Mikeasaurus] thought ahead and strapped his setup down inside a roof mounted cargo box. A plastic covered hole in the front of the box allows the projector to shoot down on the road while protecting its lens. We’d want to add a vent and fan to ensure that projector gets a bit of airflow as well.

On the road, the system actually works. Understandably, it’s not going to work very well during the day, but at night the system really shines! Just don’t tailgate – you wouldn’t want the driver in front of you to know exactly where you’re going, would you?

Continue reading “Direction Projection is a beacon in the night”