Rebuilding a Custom IC Saves HP Pulse Generator

 

Rebuilding an HP Custom IC[Matthew] got himself into a real pickle.  It all started when he was troubleshooting a broken Hewlett Packard 8007A pulse generator. While trying to desolder one of the integrated circuits, [Matthew] accidentally cracked it. Unfortunately, the chip was a custom HP Pulse shaper IC – not an easy part to source by any means. That broken chip began a 5 year mission: to explore strange new repair methods. To seek out new life for that HP 8007A. To boldy fix what no one had fixed before.

[Matthew's] first repair attempt was to build a drop in replacement for the HP chip. He took a look at the block diagram, and realized the chip was just some simple logic gates. He built his version with a small PCB and Fairchild TinyLogic gates. Unfortunately, the TinyLogic series is fast CMOS, while HP’s original chip used Emitter-coupled Logic (ECL). Thanks to the wildly different voltage levels of the two logic families, this design had no chance of working.

Five years later, [Matthew] was going to school at MIT, and had access to a wire bonding machine. He rebuilt the package using some epoxy, and managed to re-run the various bond wires. While everything looked promising, this attempt was also a failure. After all that work, the chip was blown.

[Read more...]

PenguinBot Follows Light, Goes Screech in the Night

The Arduino Based Penguin Robot
Ever have one of those weekend projects that takes on a life of its own? [Michael] did, and the result is this PenguinBot. While [Michael's] wife was away for the weekend he happened upon a broken toy penguin. The batteries had leaked inside, destroying the contacts. Rather than bin the toy, [Michael] made it awesome by turning it into an autonomous robot. [Michael's] goal was to create a robot that could roam around the house avoiding obstacles, or follow a light source like a flashlight.

He started by pulling out most of the original electronics. Two dollar store toy trains gave their lives and their motors to replace the penguin’s original drive system. An Arduino Pro Mini became PenguinBot’s brain. Sensors consisted of two light sensing CdS cells, an AdaFruit sound sensor, and a MaxBotix ultrasonic sensor. With the ultrasonic sensor mounted on a servo, it can detect obstacles in any direction. The CdS cells and some software will allow PenguinBot to follow lights, like any good photovore robot should.

Click past the break to see PenguinBot in action

[Read more...]

Re:load Pro, an Open Source Active Load

reload-pro

Open source test equipment has to be one of the best gifts open source hardware has given back to the community. Nowhere is this more true than in the case of  [Nick's] Re:Load Pro over on Kickstarter. Unlike resistors or similar dummy loads, an active load will always draw the set amount of current regardless of voltage. Active loads are often used to test power supplies and batteries. Is that 2500 mAh LiPo battery overstating it’s capacity? Can the power supply you just designed handle 2.5A at 12V? Both of these are jobs where active loads would come in handy.

The Re:Load Pro is actually the third version of the Re:Load. [Nick] designed the original Re:Load after becoming frustrated at the lack of a cheap active load for testing a power supply. Plenty of people showed interest in the Re:Load, but they wanted more features. That’s where the Re:Load Pro comes in. More than a straight analog design, the Pro has a Cypress PSOC 4 Arm Cortex M0 processor running the system.

[Nick] and his company, Arachnid Labs, are no strangers to us here at Hackaday. When we last covered [Nick], he was asking the USB Implementers Forum about a low cost Vendor ID option for open source hardware projects. Fittingly, the Re:Load Pro is an open source project. The schematics and source code are available on Github.

[Read more...]

Inkjet Transfers to Wood

Color Image on wood board

You can’t feed a piece of wood through a stock inkjet printer, and if you could it’s likely the nature of the material would result in less than optimal prints. But [Steve Ramsey] has a tutorial on inkjet transfers to wood over on his YouTube Channel which is a simple two-step method that produces great results. We really love quick tips like this. Steve explains the entire technique while creating an example project – all in under 2 minutes of video. We don’t want to get your hopes up though – this method will only work on porous absorbent surfaces like bare wood, not on PC boards. We’ve featured some great Inject PCB resist methods here in the past though.

The transfer technique is dead simple. [Steve] uses the backing from a used sheet of inkjet labels (the shiny part that normally gets thrown away). He runs the backing sheet through his inkjet printer. Since plastic coated backing sheet isn’t porous, the ink doesn’t soak in and dry. He then presses the still wet page onto a piece of wood. The wet ink is instantly absorbed into the wood. A lacquer clear coat seals the image in and really make the colors pop. We’d like to see how this method would work with other porous materials, like fabrics (though the ink probably wouldn’t survive the washing machine).

Click past the break for another example of [Steve's] work, and two videos featuring the technique.

[Read more...]

A 7″ Touchscreen TV Remote Control from Scratch

7inchRemote

[Jason] always wanted a touchscreen TV remote control. He could have pressed an older Android tablet into service, but he wanted to roll his own system. [Jason] gathered the parts, and is in the process of building his own 7″ touchscreen setup. He started with a 7″ LCD capacitive touchscreen. He ordered his display from buy-display.com, a Far East vendor.

[Jason's] particular display model comes mounted on a PCB which includes controllers for the display and touchscreen, as well as some memory and glue logic. The LCD controller board has quite a few jumpers to support multiple interfaces and options. While the documentation for the display was decent, [Jason] did find a few errors. After getting in touch with tech support at buy-display, he wrote a simple application which determines which jumpers to set depending on which hardware interfaces are selected from drop down lists.

With the LCD sorted, [Jason] still needed a processor. He selected the venerable Microchip PIC32MX series. This decision allowed him to use a Fubarino for the early prototypes, before switching to his own board as the system matured. [Jason] was able to get a simple GUI up and running, with standard remote buttons to control his TV and cable box. Code is on his Github repository.

[Jason's] most recent work has centered on cutting the cord. He’s switched over from DC power to a 2600 mAh LiPo battery. Click past the break to see [Jason] test out his fully wireless work in progress.

[Read more...]

Neo Geo Arcade Gets Second Life with a Raspberry Pi

neo-picade

An old Neo Geo Arcade, a Raspberry Pi, and some time were all [Matthew] needed to build this Pi Powered Arcade Emulator Cabinet.

Neo Geo was originally marketed by SNK as a very expensive home video console system. Much like the Nintendo Play Choice 10, SNK also marketed an arcade system, the MVS. The Neo Geo MVS allowed arcade operators to run up to six titles in a single cabinet. The MVS also allowed players to save games on memory cards.

[Matthew's] cabinet had seen better days. Most of the electronics were gone, the CRT monitor was dead, and the power supply was blown. Aside from a bit of wear, the cabinet frame was solid and the controls were in good shape. He decided it would be a good candidate for an emulator conversion.

We’ve seen some pretty awesome arcade conversions in the past, such as this Halloween rendition of Splatterhouse. For his conversion, [Matthew] stuck to the electronics, leaving most of the old arcade patina intact. The CRT did fire up after some components were replaced. [Matthew] ran into some refresh rate issues with the Raspberry Pi, so he opted to swap it out with a modern LCD monitor. Controls were wired up with the help of an I-PAC board.

[Matthew] had to write a driver to handle the I-PAC, but he says it was a good learning experience. Aside from the LCD screen, the result looks like it could be found in the back of an old bowling alley, or a smokey bar next to Golden Tee. Nice work, [Matthew]!

A Virtual Cane for the Visually Impaired

cane

[Roman] has created an electronic cane for the visually impaired. Blind and visually impaired people have used canes and walking sticks for centuries. However, it wasn’t until the 1920′s and 1930′s that the white cane came to be synonymous with the blind. [Roman] is attempting to improve on the white cane design by bringing modern electronics to the table. With a mixture of hardware and clever software running on an Android smartphone, [Roman] has created a device that could help a blind person navigate.

The white cane has been replaced with a virtual cane, consisting of a 3D printed black cylinder. The cane is controlled by an ATmega328 running the Arduino bootloader and [Roman's] code. Peeking out from the end of the handle is a Maxbotix ultrasonic distance sensor. Distance information is reported to the user via a piezo buzzer and a vibration motor. An induction coil allows for charging without fumbling for tiny connectors. A Bluetooth module connects the virtual cane to the other half of the system, an Android phone.

[Roman's] Android app runs solely on voice prompts and speech syntheses. Navigation commands such as “Take me to <address>” use the phone’s GPS and Google Maps API to retrieve route information. [Roman's] app then speaks the directions for the user to follow. Help can be summoned by simply stating “Send <contact name> my current location.” In the event that the user drops their virtual cane, “Find my device” will send a Bluetooth command to the cane. Once the command is received, the cane will reveal its position by beeping and vibrating.

We’ve said it before, and we’ll say it again. Using technology to help disabled people is one of the best hacks we can think of. Hackaday alum [Caleb Kraft] has been doing just that with his work at The Controller Project. [Roman] is still actively improving his cane. He’s already won a gold medal at the Niagara Regional Science and Engineering Fair. He’s entered his project in several more science events, including the Canada Wide Science Fair and the Google Science Fair. Good luck [Roman]!