Metal 3D Printing: Insta-Layers

Selective Metal Sintering is cool but slow. Fear not, a technology that was initially developed to smooth and pattern laser beams is here to save the day, according to a new paper by Lawrence Livermore researchers.

In a paper titled “Diode-based additive manufacturing of metals using an optically-addressable light valve,” the researchers lay out a procedure for using an array of high-powered laser diodes among other things to print a whole layer of metal from powdered metal at one time. No more forward and backward, left and right. Just one bright flash and you’re done. Naturally, the technology is still infantile, but huge 3D printed metallic parts are something we’ve always hoped for.

According to [Matthews], the first author of the paper, the mojo of the process comes from a customized laser modulator: the Optically Addressable Light Valve which functions similarly to liquid crystal-based projectors but can handle the high energies associated with powerful lasers. There’s more information straight from the paper’s authors in this interview.

While it’s true that now is the time for direct metal 3D printing, it appears that for the time being the average hacker is stuck with alternative methods for printing metal. While it’s not the same, pewter casting with PLA might suffice.

Thanks to [Kevin] for sending this in!

Digital Clock Goes with the Grain

This good-looking clock appears to be made out of a block of wood with LED digits floating underneath. In reality, it is a block of PLA plastic covered with wood veneer (well, [androkavo] calls it veneer, but we think it might just be a contact paper or vinyl with a wood pattern). It makes for a striking effect, and we can think of other projects that might make use of the technique, especially since the wood surface looks much more finished than the usual 3D-printed part.

You can see a video of the clock in operation below. The clock circuit itself is nothing exceptional. Just a MAX7218 LED driver and a display along with an STM32 ARM processor. The clock has a DHT22 temperature and humidity sensor, as well as a speaker for an alarm.

Continue reading “Digital Clock Goes with the Grain”

Go Portable with GameCube Advance SP

Off the hop, we love portable consoles. To be clear, we don’t just mean handhelds like the 3DS, or RetroPie builds, but when a maker takes a home console from generations past and hacks a childhood fantasy into reality — that’s amore. So, it’s only natural that [Bill Paxton]’s GameCube re-imagined as a Game Boy Advance SP has us enthralled.

Originally inspired by an early 2000’s imagined mockup of a ‘next-gen’ Game Boy Advance, [Paxton] first tried to wedge a Wii disk drive into this build. Finding it a bit too unwieldy, he opted for running games off of SD cards using a WASP Fusion board instead. Integrating the controller buttons into the 3D printed case took several revisions. Looking at the precise modeling needed to include the L and R shoulder buttons, that is no small feat.

Sadly, this GameCube SP doesn’t have an on-board battery, so you can’t go walking about with Windwaker. It does, however, include a 15 pin mini-din VGA-style port to copy game saves to the internal memory card, a switching headphone jack, amp, and speakers. Check it out after the break!

Continue reading “Go Portable with GameCube Advance SP”

Use the Force to Turn On This Lamp

Holocrons are holographic data storage devices used in the Star Wars universe by both Jedi and Sith as teaching devices or for storing valuable information. After the fall of the Jedi, they became rare and closely guarded artifacts. [DaveClarke] built one to light the room.

[DaveClarke] built the lamp around a Particle Photon – a STM32 ARM-M0 based microcontroller with a Cypress wifi chip. All [Dave] needed for the workings were an IR proximity sensor, a servo and a bunch of super-bright white LEDs. When the sensor detects something, it starts up the system. The servo rotates a gear which raises the lamp and fades in the LEDs. The next time the sensor detects something, the servo lowers the lamp and the lights begin to fade out. And since the Photon is connected to the cloud, the system can be accessed with a web interface as well.

Okay, so it’s just an IR sensor detecting reflected infrared light and not the Force that’s used to turn it on, but it’s still pretty cool. There are plenty of pictures and videos at [DaveClarke]’s site, along with a schematic, 3D printer designs, and the source code. The whole thing was designed using Autodesk Fusion 360 and 3D printed in about 30 hours and press-fits together. A very simple yet clever design. There have been some other great lamps on the site, like this blossoming flower lamp or this laser cut lamp with which also has a unique switch.

Continue reading “Use the Force to Turn On This Lamp”

Practical Enclosure Design, Optimized for 3D Printing

[3D Hubs] have shared a handy guide on designing practical and 3D printing-friendly enclosures. The guide walks through the design of a two shell, two button remote control enclosure. It allows for a PCB mounted inside, exposes a USB port, and is optimized for 3D printing without painting itself into a corner in the process. [3D Hubs] uses Fusion 360 (free to hobbyists and startups) in their examples, but the design principles are easily implemented with any tool.

One of the tips is to design parts with wall thicknesses that are a multiple of the printer’s nozzle diameter. For example, a 2.4 mm wall thickness may sound a bit arbitrary at first, but it divides easily by the typical FDM nozzle diameter of 0.4 mm which makes slicing results more consistent and reliable. Most of us have at some point encountered a model where the slicer can’t quite decide how to handle a thin feature, delivering either a void between perimeters or an awkward attempt at infill, and this practice helps reduce that. Another tip is to minimize the number of sharp edges in the design, because rounded corners print more efficiently and with smoother motions from the print head.

The road to enclosures has many paths, including enclosures made from FR4 (aka PCB material) all the way down to scrap wood with toner transfer labeling, and certainly desktop 3D printing has been a boon to anyone who’s had to joylessly drill and saw away at a featureless plastic box.

Josef Prusa: Multi Material Extruders for Amazing Color Prints

The Prusa i3 Mk 2 is the hotness in consumer-grade, quality 3D printing right now. And things just keep getting more interesting. We caught up with Josef Průša at Maker Faire Bay Area this weekend to see the multi-material extruder in its final form. It’s an upgrade to the Mk 2 which allows a single hot end to print in four different materials, be it different colors or different types of filament.

Continue reading “Josef Prusa: Multi Material Extruders for Amazing Color Prints”

Everything’s a Touch Surface with Electrick

Touch screens are great, but big touchscreens are expensive and irregular touchscreens are not easy to make at all. Electrik is a method developed by several researchers at Carnegie Mellon University that makes almost any solid object into a touch surface using tomography. The catch is that a conductive coating — in the form of conductive sheets, 3D plastic, or paint — is necessary. You can see a demonstration and many unique applications in the video below. They’ve even made a touch-sensitive brain out of Jell-O and a touchable snowman out of Play-Doh.

The concept is simple. Multiple electrodes surround the surface. The system injects a current using a pair of electrodes and then senses the output at the other terminals. A finger touch will change the output of several of the electrodes. Upon detection, the system will change the injection electrodes and repeat the sensing. By using multiple electrode pairs and tomography techniques, the system can determine the location of touch and even do rough motion tracking like a low-resolution touch pad mouse.

Continue reading “Everything’s a Touch Surface with Electrick”