Walk Like A Xenomorph

[James Bruton] is busy working on his latest project, a “scrap metal sculpture”-inspired Alien Xenomorph suit.  However, he wanted to get a boost in height as well as a digitigrade stance. To that end, [James] 3D-printed a pair of customized stilts. Each stilt consisted of a lifter with several parts laminated together using acetone. He bolted an old pair of shoes onto the stilts, adding straps across the toes to keep the shoes from lifting up.

While the stilts worked very well, [James] wanted to add soles to them to give him some traction as he walked – falling while in a Xenomorph costume composed of sharp plastic sounds painful enough! He decided to hybrid print the soles using ABS and Ninjaflex. The ABS part of the sole was then acetone-welded to the bottom of the stilts.

[James] hopes to add some claws for effect, so long as they don’t impede his walking too much. He has already completed a good amount of the 3D-printed suit. We know the finished project is going to be amazing: [James] has created everything from Daleks to Iron Man!

Continue reading “Walk Like A Xenomorph”

3D Printed Fish Feeder

[Helios Labs] recently published version two of their 3D printed fish feeder. The system is designed to feed their fish twice a day. The design consists of nine separate STL files and can be mounted to a planter hanging above a fish tank in an aquaponics system. It probably wouldn’t take much to modify the design to work with a regular fish tank, though.

The system is very simple. The unit is primarily a box, or hopper, that holds the fish food. Towards the bottom is a 3D printed auger. The auger is super glued to the gear of a servo. The 9g servo is small and comes with internal limiters that only allow it to rotate about 180 degrees. The servo must be opened up and the limiters must be removed in order to enable a full 360 degree rotation. The servo is controlled by an Arduino, which can be mounted directly to the 3D printed case. The auger is designed in such a way as to prevent the fish food from accidentally entering the electronics compartment.

You might think that this project would use a real-time clock chip, or possibly interface with a computer to keep the time. Instead, the code simply feeds the fish one time as soon as it’s plugged in. Then it uses the “delay” function in order to wait a set period of time before feeding the fish a second time. In the example code this is set to 28,800,000 milliseconds, or eight hours. After feeding the fish a second time, the delay function is called again in order to wait until the original starting time.

TwinTeeth: The Delta Bot PCB Factory

There are a few all-in-one CNC/milling/plotting/3D printing/engraving bots out there that claim to be mini factories for hobbyists, prototypers, and other homebrew creators. The latest is Diyouware’s TwinTeeth, a bot obviously inspired by a few 3D printers, but something that has a few interesting features we hope will propagate through the open hardware ecosystem.

The design of the TwinTeeth is an inverse delta bot, kinematically similar to a large number of 3D printers out there. Instead of suspending the tool from a trio of arms, the TwinTeeth puts the work surface on the arms and suspends the tool from the top of the machine. There are a few neat bonuses for this setup – all the tools, from a BluRay laser diode, a Dremel, solder paste dispenser, and a plastic extruder for 3D printing can be mounted in easy to mount adapters. The TwinTooth design uses three locking pins to keep each toolhead in place, and after a little bit of software setup this machine can quickly switch between its various functions.

One very interesting feature of this bot is the ability to mask off PCBs for chemical etching with a BluRay laser diode. This actually works pretty well, as evidenced by the teams earlier work with a purpose-built PCB masker machine. The only problem with this technique is that presensitized boards must be used. If that’s an issue, no problem, just use the Dremel attachment with a v-bit cutter.

How I Learned to Stop Worrying and Love My 3D Printer

So, you’re thinking about finally buying a 3D printer? All the cool kids have one. Plus, how hard can it be anyways? Well, before you pull the trigger, it might be best to read this cautionary tale of one user’s experience in getting started with his first 3D printer.

[Scott Hanselman] is a programmer and teacher who started out with zero knowledge of 3D printing. In his informative (and somewhat humorous) blog post, you can follow along with [Scott] hour-by-hour as he unravels the some of the common mysteries that almost everyone will encounter with their first 3D printer.

His adventure begins with the frustration of z-axis calibration, an important part of any 3D printer. Some of the newer printers are automating this step (as well as bed-leveling) with sensors and clever software, but even then it might need small tweaks to lay down the all-important first layer. By hour five with his new printer, this slight annoyance turns into disgruntlement, as he finds that although there is tons of documentation on-line, a lot of it can be outdated or simply unhelpful.

In the end, [Scott] got his printer up and running, and learned a lot along the way.  We bet you can too – with a little effort that is. As the quality of printers on the market keeps going up, and the price continuing to fall for an entry-level printer, now might be the perfect time for you to get started. But you might want to read [Scott’s] journey to help manage your out-of-the-box expectations.

Turning a 3D Printer into an Injection Molding Machine

Injection molding machines are able to form very detailed plastic parts, simply by squirting plastic into a mold. 3D printers squirt plastic. Why no one thought of using a 3D printer extruder to push plastic into a mold until now is something we’ll never know.

[bfk] has been working on a way to produce very small, very detailed parts for a while now, and realized the extruder of a 3D printer serves most of the functions of an injection molding machine. It takes plastic, melts it, and forces it through an orifice. Whether that plastic goes to a build platform or into a mold is beside the point; but with a simple silicone mold, anyone can replicate extremely small parts with a tool every hackerspace already has.

The tools required are RTV rubber, which is the most popular mold material around. Aside from that, it’s just silicone lubricant, dowels and LEGO to make sprues, and of course something to make a mold from. Once the mold is made, it’s a simple matter of holding the mold up to the nozzle of a printer and extruding a bit of plastic.

The resulting ‘print’ is as detailed as the best prints that will ever come off a resin printer. It’s great for making parts for very small models like [bfk]’s current project, but this technique could be expanded to anything that needs a lot of small plastic parts with tight tolerances.

Video of the process below.

Continue reading “Turning a 3D Printer into an Injection Molding Machine”

Home-brew Vibration Cleaner leaves your SLA Prints Squeaky-Clean

If you’ve had the chance to add a Form 1+ 3D printer to your basement, you might find the post-print cleaning step a bit tedious. (A 20-minute alcohol bath? Outrageous!) Fortunately, for the impatient, [ChristopherBarr] has developed the perfect solution: a post-print agitator that cuts the time in-and-out-of the bath from 20 minutes to about two.

[ChristopherBarr’s] build is the right conglomerate of parts we’d expect when keeping the price down for this hack. He’s combined a palm sander, a couple pints of urethane expanding foam, and two loaf pans into one agitating mechanism that he’s dubbed “the Loafinator.” With the urethane expanding foam, [ChristopherBarr] achieved a near-perfect fit of the sander inside the loaf pan, now that the foam has filled in the remaining contours to hold the sander in place. Best of all, the sander hasn’t been sacrificed for this build; instead, the foam holder was assembled in three stages and isolated from the sander with a layer of plastic wrap to enable later extraction.

[ChristopherBarr’s] simple, yet practical, hack serves as an excellent solution to a number of hobbyists looking to “get things agitated.” While his device is able to polish off the uncured resin from his resin prints much faster than the conventional approach, we’d imagine that a similar build could greatly expedite the PCB etching process in a muriatic-acid or ferric-chloride based PCB etching procedure–far more quickly than our previous automated solution. The time-saving comes at a price; however. Once you’ve installed your very own Loafinator alongside your printer, expect a few nosy neighbors to start asking for visits to check out your new motorboat.

Continue reading “Home-brew Vibration Cleaner leaves your SLA Prints Squeaky-Clean”

Automate Winter with a 3D Printed Snowblower

Remote controlled vehicles aren’t just for kids. In fact, you can get some seriously cool mini utility vehicles. In fact, you can even buy a mini tracked snow blowing vehicle! But [The_Great_Moo] was rather disappointed in the performance of his Kyosho Blizzard SR, so he did what any self-respecting hacker would — he redesigned the whole damn thing and 3D printed it.

The beauty with re-designing something from the ground up is you can design it specifically for 3D printing (unless of course you want to mass produce it!), so [The_Great_Moo] took his time and built all his parts with layer strength in mind. The large parts are printed at 0.4mm resolution, and the finer parts; like gears and shafts, are printed at 0.2mm resolution. He printed everything off using his Da Vinci 1.0 printer, and it apparently only took 40 hours!

Besides bolts and nuts everything is 3D printed — even the timing belt gears and gearbox! But the real question is… can it really blow snow. You’ll have to watch the video to find out.

Continue reading “Automate Winter with a 3D Printed Snowblower”