3D Printering: Maker Faire And Resin Printers

Of course Maker Faire was loaded up with 3D printers, but we’re no longer in the era of a 3D printer in every single booth. Filament-based printers are passé, but that doesn’t mean there’s no new technology to demonstrate. This year, it was stereolithography and other resin-based printers. Here’s the roundup of each and every one displayed at the faire, and the reason it’s still not prime time for resin-based printers.


Of course the Formlabs Form 1+ was presented at the Bay Area Maker Faire. They were one of the first SLA printers on the market, and they’ve jumped through enough legal hoops to be able to call themselves the current kings of low-cost laser and resin printing. There were a few new companies and products at the Faire vying for the top spot, and this is where things get interesting.

The folks at Formlabs displayed the only functional print of all the resin-based 3D printing companies – a tiny, tiny Philco Predicta stuffed with an LCD displaying composite video. The display is covered by a 3D printed lens/window. That’s the closest you’re going to get to an optically clear 3D printed part at the Faire.

XYZPrinting Nobel

The Eiffel tower, an architectural model, and a Bratz doll, all printed on the XYZPrinting Nobel
The Eiffel tower, an architectural model, and a Bratz doll, all printed on the XYZPrinting Nobel

XYZPrinting, the company famous for the $500 printer that follows the Gillette model: sell the printer cheap, sell expensive replacement filament cartridges, and laugh all the way to the bank. Resetting the DRM on the XYZPrinting Da Vinci printer is easy, the proprietary host software is done away with, and bricked devices are not. Time for a new market, huh?

Enter the XYZPrinting Nobel, a resin printer that uses lasers to solidify parts 25 microns at a time. The build volume is 125x125x200mm (5x5x7.9″), with an X and Y resolution of 300 microns. Everything prints out just as you would expect. As far as laser resin printers go, it’s incredibly cheap: $1500. It does, however, use XYZware, the proprietary toolchain forced upon Da Vinci users, although the Nobel is a stand-alone printer that can pull a .STL file from a USB drive and turn it into an object without a computer. There was no mention of how – or if – this printer is locked down.


This Shrek is the highest resolution 3D printed object I've ever seen.
This Shrek is the highest resolution 3D printed object I’ve ever seen.

You’ve seen the cheapest, now check out the most expensive. It’s the DWS Lab XFAB, an enormous and impressive machine that has incredible resolution, a huge build area, and when you take into account other resin printers, a price approaching insanity.

First, the price: $5000 officially, although I heard rumors of $6500 around the 3D printing tent. No, it’s not for sale yet – they’re still in beta testing. Compare that to the Formlabs Form 1+ at $3300, or the XYZPrinting Nobel at $1500, and you would expect this printer to be incredible. You would be right.

The minimum feature size of the XFAB is 80 microns, and can slice down to 10 microns. Compare that to the 300 micron feature size of the Form 1+ and Nobel, and even on paper, you can tell they really have something here. Looking at the sample prints, they do. These are simply the highest resolution 3D printed objects I’ve ever seen. The quality of the prints compares to the finest resin cast objects, machined plastic, or any other manufacturing process. If you’re looking for a printer for very, very high quality work, this is what you need.

Sharebot Voyager

SharebotAlso on display – but not in the 3D printing booth, for some reason – was the Sharebot Voyager. Unlike all the printers described above, this is a DLP printer; instead of lasers and galvos, the Voyager uses an off-the-shelf 3D DLP projector to harden layers of resin.

Strangely, the Sharebot Voyager was stuck in either the Atmel or the Arduino.cc (the [Massimo] one) booth. The printing area is a bit small – 56x96x100mm, but the resolution – on paper, mind you – goes beyond what the most expensive laser and galvo printers can manage: 50 microns in the X and Y axes, 20 to 100 microns in the Z. Compare that figure to the XFAB’s 80 micron minimum feature size, and you begin to see the genius of using a DLP projector.

The Sharebot Voyager is fully controllable over the web thanks to a 1.5GHz quad core, 1GB RAM computer that I believe is running 32 bit Windows. Yes, the spec sheet said OS: 32 bit Windows.

There were no sample prints, no price, and no expected release date. It is, for all intents and purposes, vaporware. I’ve seen it, I’ve taken pictures of it, but I’ve done that for a lot of products that never made it to market.

The Problem With Resin Printers

Taking a gander over all the resin-based 3D printers, you start to pick up on a few common themes. All the software is proprietary, and there is no open source solution for either moving galvos, lasers, or displaying images on a DLP projector correctly to run a resin-based machine. Yes, you heard it here first: it’s the first time in history Open Source hardware folk are ahead of the Open Source software folk. Honestly, open source resin printer hosts is something that should have been done years ago.

This will change in just a few months. A scary, tattooed little bird told me there will soon be an open source solution to printing in resin by the Detroit Maker Faire. Then, finally, the deluge of resin.

Steeping Tea Perfectly With An Arduino

While most of us here at Hack a Day can’t live without our daily java, we do understand and respect the tea drinking hackers out there, like [Brian McEvoy] the 24 Hour Engineer. Like any self-respecting hacker, [Brian] seeks to improve the efficiency of day-to-day tasks in order to spend his time on things that really matter — so he decided to automate his tea cup.

He’s 3D printed a small tea-bagging mechanism that a little RC servo motor can actuate, which allows him to control the amount of time a tea bag spends steeping in his mug. Another 3D printed enclosure includes the Arduino, a few buttons, and an LCD screen to allow you to select the steeping time for your favorite herb. In fact, the majority of this project is 3D printed which means the majority of the cost comes from the minimal electronics required — stuff you probably already have lying around. He’s also included all the design files you need in order to make your own.

The project has been in process for a while, but he’s finally finished it off, and it works great. If you’re hungry for some of the nitty-gritty build logs and troubleshooting a long the way, he’s got a whole bunch of blog posts from throughout the process.

Continue reading “Steeping Tea Perfectly With An Arduino”

Cracking A Combo Lock In Under 30 Seconds

Forget the combination to your combo lock? Well if you’ve got a 3D printer, an Arduino, a servo and a stepper motor handy — you can build your own Combo Breaker pretty easily. It’s capable of solving any Master combination lock in 8 tries or less.

The creator [Samy Kamkar] is a privacy and security researcher, who absolutely loves finding holes in security. We actually just heard from him at our very own Hack a Day Prize: Los Angeles event, where he talked about his wireless keyboard sniffer he built into a cellphone charger.

He’s previously shown us how to crack a combo lock in 8 tries or less using an online calculator he made. This project is just an extension of that to automate the whole process.

As always he gives an extremely thorough explanation of the project in his build log video — including designing the 3D printed parts! If you wanna build your own it’ll cost just under $100 and you can grab all the necessary info and source files from his GitHub.

[Thanks for the tip Justin!]

Continue reading “Cracking A Combo Lock In Under 30 Seconds”

Ultrasonic Misting Vapor Polisher for 3D Printed Parts

If you’ve ever seen 3D printed parts form an extrusion type printer, one of the first things you’ll notice is the texture. It’s caused by the printer laying down its plastic layer after layer. This surface texture isn’t always desirable, so people have found a few ways to smooth the 3D printed part out. For example if you are using ABS, you can rinse or “paint” the part with acetone. Another method of smoothing is heat up some acetone in a container, and let the acetone vapors do work to smooth the finished part.

[Mike] from engineerdog.com thinks he may have found a more elegant solution using an inexpensive ultrasonic humidifier you can buy online for about $40 USD. This room humidifier uses a piezoelectric transducer that can vibrate liquids at a high frequency to produce a mist. [Mike] removed the transducer and electronics from the humidifier and mounted it into a paint can.  This is where the acetone is stored, and turned into a vapor by the transducer. An aquarium pump is used to transfer the highly concentrated vapors into the polishing chamber (an extra large pickle jar.) He added a spring loaded, electrical timer (the kind you might find in the bathroom at an office building) to make his vapor polisher as easy to use as a microwave oven.

[Mike] concludes his post with some strength testing of parts before and after acetone treatment, and was surprised to find that the parts were weaker after the treatment.  You can read more about that on his blog and see a video of the vapor polisher after the break.

Continue reading “Ultrasonic Misting Vapor Polisher for 3D Printed Parts”

Printing Photorealistic Images on 3D Objects

Hydrographic Printing is a technique of transferring colored inks on a film to the surface of an object. The film is placed on water and activated with a chemical that allows it to adhere to an object being physically pushed onto it. Researchers at Zhejiang University and Columbia University have taken hydrographic printing to the next level (pdf link). In a technical paper to be presented at ACM SIGGRAPH 2015 in August, they explain how they developed a computational method to create complex patterns that are precisely aligned to the object.

Typically, repetitive patterns are used because the object stretches the adhesive film; anything complex would distort during this subjective process. It’s commonly used to decorate car parts, especially rims and grills. If you’ve ever seen a carbon-fiber pattern without the actual fiber, it’s probably been applied with hydrographic printing.

print_tThe physical setup for this hack is fairly simple: a vat of water, a linear motor attached to a gripper, and a Kinect. The object is attached to the gripper. The Kinect measures its location and orientation. This data is applied to a 3D-scan of the object along with the desired texture map to be printed onto it. A program creates a virtual simulation of the printing process, outputting a specific pattern onto the film that accounts for the warping inherent to the process. The pattern is then printed onto the film using an ordinary inkjet printer.

The tiger mask is our personal favorite, along with the leopard cat. They illustrate just how complex the surface patterns can get using single or multiple immersions, respectively. This system also accounts for objects of a variety of shapes and sizes, though the researchers admit there is a physical limit to how concave the parts of an object can be. Colors will fade or the film will split if stretched too thin. Texture mapping can now be physically realized in a simple yet effective way, with amazing results.

Continue reading “Printing Photorealistic Images on 3D Objects”

Robo Lamp is Too Damn Cute!

Remember the Pixar lamp? Well, [Rick] from [Phlegmatic Prototyping] decided to build his own.

It’s actually the third iteration of the project, the first being made from a cheap camera sensor, an ATMega328, a computer mouse and laser cut parts. The second iteration… sounds like it was the Pixar Lamp — and due to possible copyright infringement [Rick] decided not to show it off. Which brings us to number three, Robolamp the Third.

Quite obviously not the Pixar lamp now, [Rick] designed the whole thing in 3D CAD and had it printed at Shapeways. It uses a CMUCAM5 vision sensor that detects color hues, allowing the lamp to track colorful objects, like an orange, which ends up looking painfully cute. Just take a look at the video.

Continue reading “Robo Lamp is Too Damn Cute!”

Printed Tentacles for PCB Probing

Every hacker workbench has one or more of those “helping hand” devices to aid in soldering and assembly. When it comes to testing and debugging though, it could get tricky if you have to start handling test probes while looking at the meter display or fiddling with knobs on the oscilloscope. Sometimes one has to test a board that has just pads for test points. Or maybe you need to directly probe pins on an IC. Checking multiple signals on I2C, SPI, Serial or USB is not too easy with just two hands. [Giuseppe Finizia] is an electronic engineer at the Scientific Investigations Department of the Carabinieri in Italy. He works as a senior analyst in the Electronic Forensics Unit and deal’s with technical investigations on seized electronic devices. To help him in his investigative work, he designed and built a 3D printed PCB workstation with octopus-like tentacles that provides all the additional fingers needed.

The tool is basically a base with adjustable clamps where the test PCB can be fixed. Around the base, up to twelve articulated “tentacles” can be fixed. Various test accessories are attached to the ends of these tentacles – Alligator Clips for holding electronic parts, IC Hook Clip Grabbers, Micro SMD Grabber Test Clips and some others that he is still working on. [Giuseppe] used  MOI 3D modeling software to design his device, and the files are available on Thingiverse for download. He does warn that printing all the parts, specially the tentacle units, can be quite tricky on a regular 3D printer. He used a ZORTRAX M200 printer in high resolution mode and Z-HIPS filament. However, it may be easier to just use machine shop flexible coolant pipe for the tentacles. This may require some sort of modification to the base mounts and the business end of the tentacles though.

Thanks to [CFTechno] for sending in this tip.