Hackaday Prize Entry: MCXY – Mini Laser Cut Aluminum 3D Printer

With the easy availability of cheap and 3D printers from the usual Chinese websites, you might think that there could be little room for another home-made 3D printer project. fortunately, the community of 3D printer making enthusiasts doesn’t see it that way.

[Bobricius] has a rather nice 3D printer design in the works that we think you’ll like. It follows the MakerBot/Ultimaker style of construction in that it is a box rather than a gantry, and it is assembled from CNC-cut aluminum for a sturdy and pleasing effect. Whar sets it apart though is its size, at only 190x190x251mm and with an 80x80x80mm print volume, it’s tiny. You might wonder why that could be an asset, but when you consider that he already has a much larger printer it becomes obvious that something small and portable for quick tiny prints could be an asset.

Unusually for a home-made 3D printer, it has no 3D printed parts, instead, it is laser cut throughout. And also unusually all the CAD work was done in EAGLE, better known for PCB work. It’s a work in progress we’re featuring today because it’s a Hackaday Prize entry, but it looks as though the finished item will be something of a little gem.

Homemade 3D printers can be particularly impressive, for example, we’ve shown you this excellent SLA printer.

Gawkerbot is Watching You

While sick with the flu a few months ago, [CroMagnon] had a vision. A face with eyes that would follow you – no matter where you walked in the room. He brought this vision to life in the form of Gawkerbot. This is no static piece of art. Gawkerbot’s eyes slowly follow you as you walk through its field of vision. Once the robot has fixed its gaze upon you, the eyes glow blue. It makes one wonder if this is an art piece, or if the rest of the robot is about to pop through the wall and attack.

Gawkerbot’s sensing system is rather simple. A PIR sensor detects motion in the room. If any motion is detected, two ultrasonic sensors which make up the robot’s pupils start taking data. Code running on an ATmega328 determines if a person is detected on the left or right, and moves the eyes appropriately.

[CroMagnon] used an old CD-ROM drive optics sled to move Gawkerbot’s eyes. While the motor is small, the worm drive has plenty of power to move the 3D-printed eyes and linkages. Gawkerbot’s main face is a 3D-printed version of a firefighter’s smoke helmet.

The ultrasonic sensors work, but it took quite a bit of software to tame the jitters noisy data stream. [CroMagnon] is thinking of using PIR sensors on Gawkerbot 2.0. Ultrasonic transducers aren’t just for sensing. Given enough power, you can solder with them. Ultrasonics even work for wireless communications.

Check out the video after the break to see Gawkerbot in action.

Continue reading “Gawkerbot is Watching You”

3D Printing Glass Using Stereolithography

3D printing is one of the best things that has happened to the maker community in recent years, however the resulting output has always been prone to damage when used in high temperature applications or places where the part may be exposed to corrosive chemicals. In a recent paper titled “Three-dimensional printing of transparent fused silica glass“, [Kolz, F et. al.] have proposed a method which uses stereolithography printers to create glass objects that can be used in research applications where plastic just won’t cut it.

When we say stereolithography you probably think of resin printing, but it refers to the general use of light beams to chain molecules together to form a solid polymer. The researchers here use amorphous silica nanoparticles as a starting point that is later cured by UV light creating a polymerized composite. This structure is then exposed to high temperatures of 1300 °C resulting in models consisting of pure fused silica glass. This means that the part has excellent thermal and chemical properties, and is also optically compatible with research grade equipment.

Continue reading “3D Printing Glass Using Stereolithography”

Budget Astrophotography With A Raspberry Pi

New to astrophotography, [Jason Bowling] had heard that the Raspberry Pi’s camera module could be used as a low-cost entry into the hobby. Having a Raspberry Pi B+ and camera module on hand from an old project, he dove right in, detailing the process for any other newcomers.

Gingerly removing the camera’s lens, the module fit snugly into a 3D printed case — courtesy of a friend — and connected it to a separate case for the Pi. [Bowling] then mounted he camera directly on the telescope — a technique known as prime-focus photography, which treats the telescope like an oversized camera lens. A USB battery pack is perfect for powering the Pi for several hours.

When away from home, [Bowling] has set up his Pi to act as a wireless access point; this allows the Pi to send a preview to his phone or tablet to make adjustments before taking a picture. [Bowling] admits that the camera is not ideal, so a little post-processing is necessary to flesh out a quality picture, but you work with what you have.
Continue reading “Budget Astrophotography With A Raspberry Pi”

Hacker U.

If you go to the University of South Florida, you can take the “Makecourse.” The 15-week program promises to teach CAD software, 3D printing, Arduino-based control systems, and C++. Don’t go to the University of South Florida? No worries. Professor [Rudy Schlaf] and [Eric Tridas] have made the entire course available online. You can see several videos below, but there are many more. The student project videos are great, too, like [Catlin Ryan’s] phase of the moon project (see below) or [Dustin Germain’s] rover (seen above).

In addition to a lesson plan and projects, there’s a complete set of videos (you can see a few below). If you are a regular Hackaday reader, you probably won’t care much about the basic Arduino stuff and the basic electronics–although a good review never hurts anyone. However, the more advanced topics about interrupts, SDCards, pin change interrupts might be just the thing. If you ever wanted to learn Autodesk Inventor, there are videos for that, too.

Continue reading “Hacker U.”

Easy DIY Microfluidics

Microfluidics, the precise control and manipulation of small volumes of liquids, is heavily used in any field that does small-scale experiments with expensive reagents (We’re looking at you, natural sciences.) However, the process commonly used to create microfluidic devices is time and experience intensive. But, worry not: the Uppsala iGEM team has created Chipgineering: A manual for manufacturing a microfluidic chip.

Used while developing everything from inkjet print heads to micro-thermal technologies, microfluidic systems are generally useful. Specifically, Uppsala’s microfluidic device performs a simple biological procedure, a heat-shock transformation, as a proof of concept. Moreover, Uppsala uses commonly available materials: ready to pour PDMS (a biologically compatible silicon) and a 3D printed mold. Additionally, while the team used a resin 3D printer, there seems to be little reason that a fused deposition modeling (FDM) printer wouldn’t work just as well. Particularly interesting is how they sandwich their PDMS between two plates, potentially allowing easy removal and replacement of reagents without external mechanisms. And, to put the cherry on top, Uppsala’s well-illustrated documentation is a joy to read.

This isn’t the first time we’ve covered microfluidic devices, and if you’re still in the prototyping phase, these microfluidic LEGO-like blocks might be what you need. But, if you prefer macrofluidics, this waste shark that aims to clean our oceans might be more your style.

Customize Your Ratios with a 3D-Printed Gearbox

Small DC motors are easy to find — you can harvest dozens from old printers and copiers. You might even get a few with decent gearboxes too. But will you get exactly the motor with exactly the gearing your project needs? Unlikely, but you can always just print a gearbox to get exactly what you need.

There’s nothing fancy about [fortzero]’s gearboxes. The motors are junk bin specials, and the gears are all simple spur gears 3D-printed from PLA. There are four gears in the train, each with a 2:1 reduction, giving a 16:1 overall ratio. The gears ride on brass shafts that are press-fit into the housing, and there’s not a bearing in sight — just a few washers to keep the gears spaced apart and plenty of grease. Despite the simplicity, the gearboxes turned out to be pretty capable, lifting a 3.5 kg load. The design files are available and should make it easy for you to get just the ratio you want for the motor you have.

Of course more complicated gearboxes are possible with a 3D printer, including a split-harmonic planetary gear, or a strain wave gear using a timing belt. No 3D printer? No problem! Just build a LEGO gearbox.

Continue reading “Customize Your Ratios with a 3D-Printed Gearbox”