Analog Guts Display GPS Velocity in this Hybrid Speedometer

A digital dash is cool and all, but analog gauges have lasting appeal. There’s something about the simplicity of a purely mechanical gauge connected directly to a vehicle’s transmission. Of course that’s not what’s hapenning here. Instead, this build is an analog display for GPS-acquired speed data.

The video below does a good job at explaining the basics of [Grant Stephens]’ build. The display itself is a gutted marine speedometer fitted with the movement from a motorcycle tachometer. The tach was designed to take a 4-volt peak-to-peak square wave input signal, the frequency of which is proportional to engine speed. To display road speed, [Grant] stuffed an ATTiny85 with a GPS module into the gauge and cooked up a script to convert the GPS velocity data into a square wave. There’s obviously some latency, and the gauge doesn’t appear to register low speeds very well, but all in all it seems to match up well to the stock speedo once you convert to metric.

There’s plenty of room for improvement, but we can see other applications where an analog representation of GPS data could be useful. And analog gauges are just plain fun to digitize – like these old meters and gauges used to display web-scraped weather data.

Continue reading “Analog Guts Display GPS Velocity in this Hybrid Speedometer”

EV History: The Lightning Precedes The Thunder

In 1988, a bunch of engineers from Hotzenwald, Germany, came together and decided that it is time for the future of mobility: A new, more modern and environmentally friendly car should put an end to fossils and emissions while still being fun to drive. “It should become a new kind of car. Smaller, lighter, cleaner – and more beautiful” is how future CEO Thomas Albiez described his mission. For the first time in automotive history, this series car would be designed as an all-electric vehicle from the start and set a new standard for mobility. The project was given the codename “Hotzenblitz” (“Hotzen Bolt”) to indicate how the idea came to them: Like a lightning bolt. The snarky regional term also came with a double meaning: Imaginary lightning bolts, used for insurance fraud.

hotzenblitz_chassis
Hotzenblitz frame construction (origin unknown, image source)

Unnoticed by the rest of the world, they founded Hotzenblitz Mobile. Industrial Designer Harold Schurz was contracted to design the chassis for the Hotzenblitz, which was then modeled into a prototype chassis. The self-funded team moved fast. An external motorsports company helped to develop the tubular steel frame, and soon their vision took on shape. After the team had fitted a motor and transmission into the frame, CEO Thomas Albiez himself installed the traction battery and drive train. The team felt confident with the result, and in July 1990, during an open house day in the office, they somewhat spontaneously decided to call Green Tech entrepreneur and chocolate mogul Alfred Ritter.

Alfred Ritter had experienced financial losses after the Chernobyl Disaster. Many agricultural regions, including several hazelnut plantations that were vital to Alfred’s chocolate business, were irreversibly lost to the fallout contamination. It was then when he turned to the green energy business, founding the Paradigma group to manufacture solar collector systems and pellet heaters. When Thomas and the team called, Alfred jumped on the idea of an electric car. In the same year, Alfred Ritter and his sister Marli Hoppe-Ritter became shareholders in the company and helped to finance the future of the Hotzenblitz.

Continue reading “EV History: The Lightning Precedes The Thunder”

Custom Engine Parts from a Backyard Foundry

Building a car engine can be a labor of love. Making everything perfect in terms of both performance and appearance is part engineering and part artistry. Setting your creation apart from the crowd is important, and what better way to make it your own than by casting your own parts from old beer cans?

[kingkongslie] has been collecting parts for a dune buggy build, apparently using the classic VW Beetle platform as a starting point. The air-cooled engine of a Bug likes to breathe, so [kingkongslie] decided to sand-cast a custom crankcase breather from aluminum.

Casting solid parts is a neat trick but hardly new; we’ve covered the techniques for casting plastic, pewter, and even soap. The complexity of this project comes from the fact that the part needs to be hollow. [kingkongslie] managed this with a core made of play sand and sodium silicate from radiator stop-leak solution hardened with a shot of carbon dioxide. Sure, it looks like a Rice Krispie treat, but a core like that will stand up to the molten aluminum while becoming weak enough to easily remove later. The whole complex mold was assembled, beer cans melted in an impromptu charcoal and hair-dryer foundry, and after one false start, a shiny new custom part emerged from the sand.

We’ve got to hand it to [kingkongslie] – this was a nice piece of work that resulted in a great looking part. But what we love about this is not only all the cool casting techniques that were demonstrated but also the minimalist approach to everything. We can all do stuff like this, and we probably should.

Continue reading “Custom Engine Parts from a Backyard Foundry”

Books You Should Read: The Car Hacker’s Handbook

I just had my car in for an inspection and an oil change. The garage I take my car to is generally okay, they’re more honest than a stealership, but they don’t cross all their t’s and dot all their lowercase j’s. A few days after I picked up my car, low and behold, I noticed the garage didn’t do a complete oil change. The oil life indicator wasn’t reset, which means every time I turn my car on, I’ll have to press a button to clear an ominous glowing warning on my dash.

For my car, resetting the oil life indicator is a simple fix – I just need to push the button on the dash until the oil life indicator starts to blink, release, then hold it again for ten seconds. I’m at least partially competent when it comes to tech and embedded systems, but even for me, resetting the oil life sensor in my car is a bit obtuse. For the majority of the population, I can easily see this being a reason to take a car back to the shop; the mechanic either didn’t know how to do it, or didn’t know how to use Google.

The two most technically complex things I own are my car and my computer, and there is much more information available on how to fix or modify any part of my computer. If I had a desire to modify my car so I could read the value of the tire pressure monitors, instead of only being notified when one of them is too low, there’s nowhere for me to turn.

2015 was the year of car hacks, ranging from hacking ECUs to pass California emissions control standards, Google and Tesla’s self-driving cars, to hacking infotainment systems to drive reporters off the road. The lessons learned from these hacks are a hodge-podge of forum threads, conference talks, and articles scattered around the web. While you’ll never find a single volume filled with how to exploit the computers in every make and model of automobile, there is space for a reference guide on how to go about this sort of car hacking.

I was given the opportunity to review The Car Hacker’s Handbook by Craig Smith (259p, No Starch Press). Is it a guide on how to plug a dongle into my car and clear the oil life monitor the hard way? No, but you wouldn’t want that anyway. Instead, it’s a much more informative tome on penetration testing and reverse engineering, using cars as the backdrop, not the focus.

Continue reading “Books You Should Read: The Car Hacker’s Handbook”

Reverse Engineering A Nissan Leaf Battery Pack

Batteries wear out. If you are an electric vehicle enthusiast, it’s a certainty that at some time in your not-too-distant future there will be a point at which your vehicle’s batteries have reached the end of their lives and will need to be replaced. If you have bought a new electric vehicle the chances are that you will be signed up to a leasing deal with the manufacturer which will take care of this replacement, but if you have an older vehicle this is likely to be an expensive moment.

Fortunately there is a tempting solution. As an increasing number of electric vehicles from large manufacturers appear on our roads, a corresponding number of them have become available on the scrap market from accident damage. It is thus not impossible to secure a fairly new lithium-ion battery pack from a modern electric car, and for a significantly lower price than you would pay for new cells. As always though, there is a snag. Such packs are designed only for the cars they came with, and have proprietary connectors and protocols with which they communicate with their host vehicle. Fitting them to another car is thus not a task for the faint hearted.

Hackaday reader [Wolf] has an electric truck, a Solectria E10. It has a set of elderly lead-acid batteries and would benefit hugely from an upgrade to lithium-ion. He secured a battery pack from a 2013 Nissan Leaf electric car, and he set about reverse engineering its battery management system (BMS). The Solectria will use a different battery configuration from the Leaf, so while he would like to use the Leaf’s BMS, he has had to reverse engineer its protocols so that he can replace its Nissan microcontroller with one of his own.

His description of the reverse engineering process is lengthy and detailed, and with its many photos and videos is well worth a read. He employs some clever techniques, such as making his own hardware simulation of a Li-ion cell so that he can supply the BMS known values that he can then sniff from the serial data stream.

We’ve covered quite a few EV batteries here at Hackaday. Quite recently we even covered another truck conversion using Leaf batteries, and last year we featured a Leaf battery teardown. We’ve not restricted ourselves to Nissan though, for example here’s a similar process with a Tesla Model S pack.

A Hot Rod Roadster From A Rusty Wreck

Within our community of hackers and makers you may sometimes encounter a belief that we have somehow regained a hold on the workshop lost by everyone else. But while it might be true that some of the general population may barely know one end of a screwdriver from the other it’s a huge overstatement to claim exclusivity. There are plenty of other scenes blessed with an astonishing level of engineering skill and from which breathtaking projects emerge, and it is a great pity that sometimes they exist in isolation from each other.

One such scene is that of car modification. By this we don’t mean the youths with their inadequately powered bottom-feeder cars adorned with deformed plastic, fake carbon fibre and farty exhaust pipe extensions from Halfords or Advance Auto, nor do we mean the silly-priced professional hotrods beloved of certain cable TV reality shows. Instead we mean the ordinary car hackers who take the unexciting and unloved of the automotive world into their garages and through a combination of vision and skill fashion it into something amazing. As an illustration of this art we’d like to introduce you to [ScaryOldCortina]’s “Mayday”. It’s a build from a few years ago, but no less impressive for the elapsed time.

A very rusty Austin Somerset indeed
A very rusty Austin Somerset indeed

If you are British the chances are your grandparents might have driven an Austin Somerset in the early 1950s. An unexciting mid-sized chassis-based saloon car that wasn’t badly designed but had all the inadequate rust protection you’d expect from a car of that era. A Somerset arrived in [ScaryOldCortina]’s garage that looked solid but turned out on inspection to be rusty enough that it could almost be disassembled with a hefty tug on some of the panels. He could have scrapped it, but instead he refashioned it into something a lot more exciting, a two-seater hotrod roadster. In a particularly impressive touch, he re-used most of the metal from the Somerset in its new body in a different form, for example its curved roof was cut in half to form the side panels of the new car.

The full build is in a very long thread on the Retro Rides car forum. If you read it from start to finish you’ll find an in-depth description of the minutiae of the 1950s British car parts bin, but if that will be a bit much for you we have some highlights.

When the car arrived, in his first post you can see just how far the rust had eaten into an outwardly complete vehicle and how easily he could strip away its panels. Fortunately the Somerset is a chassis-based car, so underneath the rusty bodywork was a rolling chassis which had miraculously escaped the worst of the corrosion. His vision for the car required the chassis to be shortened, but he was able to place the panels on the chassis to get an idea of what it might look line before getting out the cutter and welder and assembling the new body tub. A lot of hard work assembling the running gear into a roadworthy form and making its unlovely Austin “B” series engine into something a little more useful, and he was finally able to take it for a short test drive. The car passed all the relevant tests for British roadworthiness, and made a very cool piece of transport.

Happily though it’s the first to feature so much rust this is not the first Hackaday story involving the hacking of ancient automobiles. We recently had a look at the hacking potential of Volkswagen’s iconic Beetle, we’ve examined the work of professional TV hot-rodders when challenged over their authenticity, we’ve taken a look at Cuba’s surviving pre-revolutionary American cars, and we’ve featured a crazy project involving a Mini and a Toyota Celica.

From Rusty Cargo Van to Mobile Studio

Looking for a more unique living experience, [Zach Both] converted a 2003 Chevy Express Van he picked up from Craigslist into a gorgeous mobile home.

The van had 200,000 miles when he bought it. The body and frame were a bit rusty, but he saw the potential. First step was gutting the entire van, and getting rid of any surface rust with an angle grinder. It was a long and tedious process, but once it was done he had a blank slate to work with. Continue reading “From Rusty Cargo Van to Mobile Studio”