FabLab Hackathon Gives the Gift of Art Back to a Stranger in Need

If building the James Webb Space Telescope and F/A-18 fighter jets aren’t enough reasons to work for Northrop Grumman, there’s always the FabLab – the company sponsored hackerspace. It’s a place where anything goes and everything is possible, including giving the gift of art back to a stranger in need.

The video below tells the story of [Raul Pizarro], a young man and gifted artist. Diagnosed as a child with muscular dystrophy, [Raul] was getting to the point where the progressive weakening of his muscles was making it difficult to hold up his arm. [Raul]’s art was slipping away – until [Tony Long] caught wind of the story, that is. [Tony] runs the FabLab, and once he put out the word to his colleagues he got a hackathon together to work on solutions for [Raul].

What they came up with was an overhead support system with a tool balancer and custom articulated sling to reduce the effect of gravity and support [Raul]’s arm. To compensate for his reduced range of motion, they also built an easel with actuators that can raise and lower his canvases and position them where he needs them. It looks like the FabLab team paid special attention to making everything as smooth and stable as possible, and as a result [Raul] is back to doing what he does best. Oh, and if [Tony] and the FabLab sound familiar, it might be because he played host when our own [Mike Szczys] visited Northrop last year.

We really like to see hacks that help mankind as a whole, but there’s something special about a bunch of strangers coming together to help just one man too. Hats off to [Tony] and his FabLab team for pulling off a great hack and giving [Raul] back his art.

Continue reading “FabLab Hackathon Gives the Gift of Art Back to a Stranger in Need”

Hackaday Prize Entry: Open-Source Myoelectric Hand Prosthesis

Hands can grab things, build things, communicate, and we control them intuitively with nothing more than a thought. To those who miss a hand, a prosthesis can be a life-changing tool for carrying out daily tasks. We are delighted to see that [Alvaro Villoslada] joined the Hackaday Prize with his contribution to advanced prosthesis technology: Dextra, the open-source myoelectric hand prosthesis.

dextra_handDextra is an advanced robotic hand, with 4 independently actuated fingers and a thumb with an additional degree of freedom. Because Dextra is designed as a self-contained unit, all actuators had to be embedded into the hand. [Alvaro] achieved the necessary level of miniaturization with five tiny winches, driven by micro gear motors. Each of them pulls a tendon that actuates the corresponding finger. Magnetic encoders on the motor shafts provide position feedback to a Teensy 3.1, which orchestrates all the fingers. The rotational axis of the thumb is actuated by a small RC servo.

mumai_boardIn addition to the robotic hand, [Alvaro] is developing his own electromyographic (EMG) interface, the Mumai, which allows a user to control a robotic prosthesis through tiny muscle contractions in the residual limb. Just like Dextra, Mumai is open-source. It consists of a pair of skin electrodes and an acquisition board. The electrodes are attached to the muscle, and the acquisition board translates the electrical activity of the muscle into an analog voltage. This raw EMG signal is then sampled and analyzed by a microcontroller, such as the ESP8266. The microcontroller then determines the intent of the user based on pattern recognition. Eventually this control data is used to control a robotic prosthesis, such as the Dextra. The current progress of both projects is impressive. You can check out a video of Dextra below.

Continue reading “Hackaday Prize Entry: Open-Source Myoelectric Hand Prosthesis”

Hackaday Prize Entry: Robotic Prosthetic Leg Is Open Source And 3D-Printable

We’ve been 3D-printing parts for self-replicating machines before, but we’ve been working on the wrong machines. Software and robotics engineer [David Sanchez Falero] is about to set it right with his Hackaday Prize entry, a 3D-printable, open source, robotic prosthetic leg for humans.

[David] could not find a suitable, 3D-printable and customizable prosthetic leg out there, and given the high price of commercial ones he started his own prosthesis project named Drakkar. The “bones” of his design are made of M8 steel threaded rods, which help to keep the cost low, but are also highly available all over the world. The knee is actively bent by a DC-motor and, according to the source code, a potentiometer reads back the position of the knee to a PID loop.

drako_footWhile working on his first prototype, [David] quickly found that replicating the shape and complex mechanics of a human foot would be too fragile when replicated from 3D-printed parts. Instead, he looked at how goat hooves managed to adapt to uneven terrain with only two larger toes. All results and learnings then went into a second version, which now also adapts to the user’s height. The design, which has been done entirely in FreeCAD, indeed looks promising and might one day compete with the high-priced commercial prosthesis.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Sniffing Defibrillator Data

There’s a lot of implantable medical technology that is effectively a black box. Insulin pumps monitor blood sugar and deliver insulin, but you can’t exactly plug in a USB cable and download the data. Pacemakers and cardiac defibrillators are the same way. For these patients, data is usually transmitted to a base station, then sent over the Internet to help doctors make decisions. The patient never gets to see this data, but with a little work and a software defined radio, a team on Hackaday.io is cracking the code to listen in on these implanted medical devices.

The team behind ICeeData was assembled at a Health Tech Hackathon held in Latvia last April. One of the team members has an implanted defibrillator keeping her ticker in shape, and brought along her implant’s base station. The implant communicates via 402-405MHz radio, a region of the spectrum that is easily accessible by a cheap RTL-SDR TV Tuner dongle.

Right now the plan is to intercept the communications between the implant and the base station, decode the packets, decipher the protocol, and understand what the data means. It’s a classic reverse engineering task that would be the same for any radio protocol, only with this ones, the transmissions are coming from inside a human.

 

The HackadayPrize2016 is Sponsored by:

DIY Vein Finder Shows you Where to Stick It

Everyone who’s donated blood, gotten an intravenous (IV) line put in, or has taken a blood test knows that little bit of anxiety before the needle goes in. Will this be a one stick operation, or will the phlebotomist do their impression of drilling for oil while trying to find a vein? Some of us are blessed with easy to find blood vessels. Others end up walking out looking like they’ve been in a fight with a needle.

[Alex’s] wife girlfriend is a nurse who’s had trouble finding veins in the past. [Alex] is an automotive engineer by trade, more acquainted with oil lines than veins and arteries. While he couldn’t help her himself, [Alex] designed this 3D printed vein finder to help his wife girlfriend out at work. He started by studying devices on the market. Products like Veinlite use LEDs to illuminate the skin. Essentially these products are a string of LEDs and a battery. They are patented, FDA approved, and will set you back between $188 and $549 USD. [Alex] and his wife girlfriend couldn’t afford that kind of cost, so he built his own. Continue reading “DIY Vein Finder Shows you Where to Stick It”

To See Within: Making Medical X-rays

I was a bit of a lost soul after high school.  I dabbled with electrical engineering for a semester but decided that it wasn’t for me – what I wouldn’t give for a do-over on that one. In my search for a way to make money, I stumbled upon radiologic technology – learning how to take X-rays. I figured it was a good way to combine my interests in medicine, electronics, and photography, so after a two-year course of study I got my Associates Degree, passed my boards, and earned the right to put “R.T.(R) (ARRT)” after my name.

That was about as far as that career went. There are certain realities of being in the health care business, and chief among them is that you really have to like dealing with the patients. I found that I liked the technology much more than the people, so I quickly moved on to bigger and better things. But the love of the technology never went away, so I thought I’d take a look at exactly what it takes to produce medical X-rays, and see how it’s changed from my time in the Radiology Department.

Continue reading “To See Within: Making Medical X-rays”

3D Printing Bone

What do you print with your 3D printer? Key chains? More printer parts (our favorite)? Enclosures for PC boards? At Johns Hopkins, they want to print bones. Not Halloween skeletons, either. Actual bones for use in bodies.

According to Johns Hopkins, over 200,000 people a year need head or face bone replacements due to birth defects, trauma, or surgery. Traditionally, surgeons cut part of your leg bone that doesn’t bear much weight out and shape it to meet the patient’s need. However, this has a few problems. The cut in the leg isn’t pleasant. In addition, it is difficult to create subtle curved shapes for a face out of a relatively straight leg bone.

This is an obvious application for 3D printing if you could find a suitable material to produce faux bones. The FDA allows polycaprolactate (PCL) plastic for other clinical uses and it is attractive because it has a relatively low melting point. That’s important because mixing in biological additives is difficult to do at high temperatures.

Continue reading “3D Printing Bone”