Home-made Adjustable Knife Jig

When sharpening a knife, it is critical to have the knife at the right angle. A knife jig handles this for you, letting you focus on getting the edge right. You could just buy one, but where’s the fun in that? [origamimavin] decided to make his own adjustable knife jig using bits he bought from the hardware store for $27, and which you might have in your junk pile. Fortunately for us, he’s written up the process in excellent detail, explaining the how and why of each step.

He used a couple of tools that you might not have lying around (a bandsaw and a belt sander), but these could be easily replaced with their manual cousins, or your local hackerspace will doubtless provide you access to them. Either way, it’s a simple build which could help your knives keep their clean, sharp edge for years to come.

Restoring The Groundbreaking Xerox Alto

The Xerox Alto was a minicomputer that had a lot of firsts to its name: first GUI, first Ethernet connection, and first computer to use a laser printer. This is the computer that inspired Steve Jobs to build the Lisa. And this was built all back in 1973! So when [Ken Shirriff] and a team of other old-computer aficionados got their hands on one, you know they’d get to work.

[Ken]’s blog describes the start of what’s sure to be a long journey. It mostly describes the Alto system and locates its place in computer history, but there are some interesting sidelines as well — like how [Alan Kay] also basically outlined all of the functionality of the modern laptop / tablet along the way to the Alto; it was supposed to be an interim Dynabook.

Work on this grandfather-of-modern-computers is just getting started, and [Ken] and crew are dusting off the power supplies and cataloguing memory boards. You can be sure that we’ll follow along with this restoration project, and keep you informed.

Smartphone Hack For Adding Magnet Power Dock

Here’s a neat hack for making a magnetic charging mount for a cell phone. We know what you’re thinking, but this is definitely not a traditional contactless charging system. Those use magnets but in a different way. This hack involves putting a couple of magnets onto the case of the cell phone, and a couple more on a charging base. You then wire these magnets into the power inputs of the USB port, and a USB cable onto the base, so putting the phone on the base magnets completes the circuit. The magnets themselves become the charging contacts.

It’s a neat idea, but makes us wonder what this will do to the compass sensor in your phone or your credit cards if they are nearby. With these caveats, it is a neat hack, and could be easily adapted. Want to make a vertical cell phone mount, or a way to attach (and charge) your cell phone to the fridge? This can be easily adapted for that.

Continue reading “Smartphone Hack For Adding Magnet Power Dock”

Fixing a broken CCFL Backlight

When you work at Tektronix and they make a difficult to refuse offer for their ‘scopes, you obviously grab it. Even if the only one you can afford is the not-so-awesome TDS1012. [Jason Milldrum] got his unit before cheaper, and better ‘scopes appeared on the market. It served him well for quite a long time. But keeping it switched on all the time took a toll, and eventually the CCFL backlight failed. Here’s how he replaced the CCFL back light with a strip of LED’s and revived the instrument.

Searching for an original replacement CCFL backlight didn’t turn up anything – it had been obsoleted long back. Even his back-channel contacts in Tektronix couldn’t help him nor could he find anything on eBay. That’s when he came across a video by [Shahriar] who hosts the popular The Signal Path blog. It showed how the CCFL can be replaced by a thin strip of SMD LEDs powered by a DC-DC converter. [Jason] ordered out the parts needed, and having worked at Tektronix, knew exactly how to tear down the ‘scope. Maybe he was a bit rusty, as he ended up breaking some (non-critical) plastic tabs while removing the old CCFL. Nothing which could not be fixed with some silicone sealant.

The original DC-DC converter supplied along with his LED strip needed a 12V input, which was not available on the TDS1012. Instead of trying to hack that converter to work off 6V, he opted to order out another suitable converter instead. [Jason]’s blog details all the steps needed, peppered with lots of pictures, on how to make the swap. The one important caveat to be aware of is the effect of the LED DC-DC converter on the oscilloscope. Noise from the converter is likely to cause some performance issues, but that could be fixed by using a more expensive module with RF and EMI filtering.

This is not an original hack for sure. Here’s a “Laptop backlight converted from CCFL to LED” from a few years back, and this one for “LCD: Replacing CCFL with LEDs” from even further back in time. Hopefully if you have an instrument with a similar issue, these ought to guide you on how to fix things.

Fixing a Broken Bandsaw with a Custom Steel Part

When a large bandsaw broke down due to a cast iron part snapping in two, [Amr] took the opportunity to record the entire process of designing and creating a solid steel replacement for the broken part using a (non-CNC) mill and lathe.

For those of us unfamiliar with the process a machinist would go through to accomplish such a thing, the video is extremely educational; it can be sobering both to see how much design work happens before anything gets powered up, and just how much time and work goes into cutting and shaping some steel into what at first glance looks like a relatively uncomplicated part.

Continue reading “Fixing a Broken Bandsaw with a Custom Steel Part”

Fixing A Complicated Scrollwheel

[Thomas] loves his Logitech MX Master mouse, which has a pretty elaborate scroll-wheel mechanism. Perhaps too elaborate; it broke on him after a week of use, just when he was getting used to the feature. So what did he do? Took it apart and fixed it, naturally. And as a bonus, we get a guided tour of the interesting mechanism. Check out his video below to watch it in action.

The weighted scroll wheel switches between two different modes, one with a detent like you’re probably used to, and one where the wheel is allowed to spin freely for long-distance travel. And to do this, it’s actually got a little motor inside that rotates a cam and throws a lever into the side of the scroll wheel for the detent mode, and pulls the lever out of the way for free spins. It must also have some logic inside that detects how quickly the scroller is spun because it re-engages as soon as the scroll wheel stops.

Continue reading “Fixing A Complicated Scrollwheel”

Bricked Intel Tablet Lives Again

We’ve probably all taken a look at the rash of cheap Intel-Atom-based tablet computers and wondered whether therein lies an inexpensive route to a portable PC. Such limited hardware laden down with a full-fat Windows installation fails to shine, but maybe if we could get a higher-performance OS on there it could be a useful piece of kit.

[donothingloop] has an Intel tablet, a TrekStore Wintron 7, bought for the princely sum of $60. Windows 10 didn’t excite him, so he decided to put Ubuntu on it, or more specifically to put Ubuntu on an SD card to try it on the Wintron before overwriting the Windows installation. His problem with that was a bug in the Baytrail Atom chipset which limits the speed of SD card access and made Ubuntu very slow, and in trying to fix the speed issue he managed to disable a setting in the BIOS which had the effect of bricking the machine. A show-stopper when the BIOS is in a tiny SPI Flash chip and can’t be wiped or restored.

What followed was an epic of desoldering the BIOS chip and reflashing it, though that description makes the process sound deceptively easy. The specification says it is a 1.8V device, so after attempts to flash it using an ESP8266 and then a home-made level-shifter failed, he was stumped. With nothing but a cheap tablet to lose, he tried the chip in a 3.3V programmer, and to his amazement despite the significant overvoltage, it survived. Resoldering the chip to the motherboard presented him with a working tablet that would live to fight another day.

We’d have said that this work might reside in the “Don’t try this at home” category, but since Hackaday readers are exactly the kind of people who do try this kind of thing at home it’s interesting and reassuring to see that it can be done, and to see how someone else did it. A tablet that can be bricked through a mere BIOS setting though is something a manufacturer should be ashamed of.

We like unbricking stories here at Hackaday, something about winning against the odds appeals to us. In the past we’ve covered Blu-ray drives crippled by dodgy DRM and routers rescued with a Raspberry Pi, but the crown has to be taken by the phone rescued with a resistor made using paperclips and pencil lead.