We Have a Problem: Health Care Where There Are No Health Care Workers

Hackaday, we have a problem. There are a lot of people on this earth and not a lot of health care workers. Let’s use our skills to help alleviate this problem. What can we do to give medical professionals a wider reach, to bridge the distances between hospital and patient, and make it easier for bystanders to administer lifesaving care.

Scope of the Problem

We’d wager that your most recent and vivid remembrance of a health care worker shortage is the Ebola outbreak in West Africa. The shortage of trained professionals and supplies certainly compounded the situation in the countries worst hit. But it didn’t create the problem. Check out this list of doctors per 1,000 people (sorted lowest-to-highest with 2010 numbers). The three countries hit hardest by the outbreak — Guinea, Liberia, and Sierra Leone — register a whopping 0.0 doctors for every 1000 people. Yeah, that’s years before the outbreak.

Keep scrolling down and you’ll see that this isn’t limited to one geographic location. All over the world there are low numbers, with India and Iraq both at 0.6, and interestingly Cuba and Qatar topping the list at 6.7 and 7.7 respectively.

This isn’t a statistics post so let’s pivot. The point is made that we’re a large world population. What kind of engineering solutions can we wield to help provide everyone with the care they need? Leave your comments below but also considered entering the Hackaday Prize with them. Write down your idea as a Hackaday.io project and tag it 2015 Hackaday Prize.

Proof That We Can Do This

firstmedic-510-aedIt’s safe to say we’ve all seen engineering solve part of this problem already. Over the last decade, Automatic External Defibrillators have become ubiquitous. The life-saving hardware is designed to be used by non-doctors to save someone whose heart rhythms have become irregular. [Chris Nefcy] helped develop AEDs and one ended up saving his life. If that’s not proof that we can change the world with our builds we don’t know what is.

Pull on that thinking cap and jump into this conversation. What can we build? What problems need to be solved right now? Where should each of us be looking to make a difference in the availability of health care in the absence of the trained professionals?


The 2015 Hackaday Prize is sponsored by:

Time for the Prize: Urban Gardening and Living off the Land

What kind of impact does growing your own food have on the world’s resources? Jump aboard for a little thought exercise on this week’s Time for the Prize challenge to brainstorm urban gardening and living off the land.

We figure for any kind of meaningful impact there would need to be wide-spread adoption of people growing at least some of their own food locally. This means making the process fun and easy, a challenge well suited for 2015 Hackaday Prize entries. Write down your ideas as a project on Hackaday.io, tag it 2015HackadayPrize and you could win this week’s prizes which are listed below.

Space, Information, and Automation

urban-gardening-thumbTo get rolling, we started thinking about three things that are needed to convince people to grow their own food or live off the land.

First up, you need space to grow. This has been the subject of a number of urban farming hacks like the one seen here which uses downspouts as a vertical garden apparatus. Openings are cut into the front of the tubes, which are each hanging from a PVC rack. Each opening hosts a plant, holding them where they have access to sunlight, while taking up very little space on a sunny balcony or sidewalk.

The concept also includes a bit of automation. It’s a hydroponic garden and simple sensors and controllers handle the water circulation while providing feedback for the gardener through a smartphone app. We think the technology of the system is one way to attract people who would otherwise not take up seed and trowel.

For those new to taking care of plants the other thing to consider is information. Not only does the sensor network need to monitor the system, but something valuable needs to be done with the data. Perhaps someone has an idea for city-wide aggregate data which will look at successes from one urban garden and make suggestions to another?

This is your time to shine. Get those ideas flowing and post them as your entry for the Hackaday Prize. Even if you don’t see the build through the idea can still help someone else make the leap to greatness in their own brainstorming.

This Week’s Prizes

time-for-the-prize-week-4-prizes

We’ll be picking three of the best ideas based on their potential to help alleviate a wide-ranging problem, the innovation shown by the concept, and its feasibility. First place will receive an RGB Shades Kit. Second place will receive a GoodFET42 JTAG programmer and debugger. Third place will receive a Hackaday CRT Android tee.


The 2015 Hackaday Prize is sponsored by:

Projects For Solving Big Water Problems

We’re looking for solutions to problems that matter and water waste is high on that list. This week we challenged you to think about Big Water; ideas that could help conserve the water used in agricultural and industrial applications. Take a look at some of the entries, get excited, and start working on your own idea for the 2015 Hackaday Prize.

Windtraps

smart-dewpoint-harvesterThat’s right, windtraps. Like the Fremen of Arrakis there were a few hackers who propose systems to pull moisture from the air.

The RainMaker is targeted for urban farming and explores the possibility of passive systems that water themselves automatically. [Hickss] admits that there are some limitations to the concept. Small systems would have limited ability to collect moisture and a need for direct sunlight in order to be solar powered. However, if you’re growing food we figure direct sunlight was a pre-requisite anyway.

On a bit grander scale is the Smart Dew-Point Water Harvester which is shown off in this diagram. The proof of concept at this point is a desktop system that collects moisture on a small heat-sync. Scroll down to that project’s comments and read about the possibility of building the system underground to take advantage of the naturally colder area.

For us the interesting question is can this be done in conjunction with traditional irrigation? Is a lot of irrigation water lost to evaporation and could reclamation through these means make an impact?

Moisture Sensing

water-sensing-orb-thumbSimple but powerful: only water when the plants need it! Here are several entries focused on sensors that make sure fields are being watered more efficiently.

The Adaptive Watering System focuses on this, seeking to retrofit current setups with sensor pods that make up a mesh network. We found the conjecture about distributing and retrieving these pods using a combine harvester quite interesting.

Going along with the networked concept there is a Moisture Monitoring Mesh Network which proposes individual solar-powered spikes. Much of the info for that project is embodied in the diagram, including a mock-up of how the data could be visualized. One thing we hadn’t spent much time thinking about is that fields may be watered unevenly and a sensor network would be a powerful tool in balancing these systems.

Wrapping up this concept is the Soil Moisture Sensor for Agriculture. [JamesW_001] rendered the image seen above as his concept for the sensor. Toss the orbs throughout the fields and the rings of contacts on the outside make up the sensor while the brains held safely inside report back wirelessly.

Plumbing

solar-water-pumpTwo projects tackled plumbing. The first is the Solar Water Pump seen here. Focused on the developing world, this array provides water for multiple applications, including agricultural irrigation, and can be used for wells or surface water sources.

Once that pump gets the water moving it will be taking a trip through some pipes which are another potential source of waste. When buried pipes leak, how will you know about it? That’s the issue tackled by the Water Pipeline Leak Detection and Location project. When the water pipe is buried, two sets of twisted-pair conductors in permeable sheathing are also buried along with it. These redundant sensors would use Time-Domain Reflectometry (TDR) to detect the location of a short between conductors. We’re a bit fuzzy on how this would detect leaks and not rain or irrigation water but perhaps the pipe/wire pairs would be in their own water-shedding sleeve?

This Week’s Winners

time-for-prize-prizes-week-3

First place this week goes to the Smart Garden and will receive a DSLogic 16-channel Logic Analyzer.

Second place this week goes to Soil Moisture Sensor for Agriculture and will receive an Adafruit Bluefruit Bluetooth Low Energy sniffer.

Third place this week goes to Solar Water Pump and will receive a Hackaday robot head tee.

Next Week’s Theme

We’ll announce next week’s theme a bit later today. Don’t let that stop you from entering any ideas this collection of entries may have inspired. Start your project on Hackaday.io and add the tag 2015HackadayPrize.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Worldwide: Toronto

Tomorrow, April 15th at 7pm, join Hackaday at the Toronto HackLab.

Our own Mythical Creature, [Sophi Kravitz] is headed North of the border to talk about all things hardware hacking! As always, we love to see what people are working on in their labs, basements, garages, and workplaces. Make sure to bring your builds with you to show off to the rest of the crowd. [Sophi] will have her Breathe project on hand. Solenoids, balloons, compressed air, and visualizations are the secret sauce behind this clever interactive build.

Since there will be snacks, hacks, drinks, and swag we’d appreciate a quick RSVP (use the link at the top of this post) just so we know you’re incoming. Apart from seeing a slew of cool builds there will be lightning talks, some information about the 2015 Hackaday Prize, and if you haven’t been to the Hacklab before this is the perfect time for your first tour. We know there’s a lot of awesome to be seen there!


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Worldwide: WORKBENCH PROJECTS meetup in Bangalore

Bangalore, India evokes different responses depending on whom you ask. Old timer’s remember it as the Pension/Retirement City (not any more though). For other’s, it’s the Silicon Valley of India. And some call it the start up capital of India. For me, though, it brings back fond old memories. This was the city where I got my first job after finishing College in Mumbai, at the princely sum of $20 a month way back in 1986.

A lot of water has flowed under the bridge since then, and next month will find me back there at another awesome Maker Space called Workbench Projects, talking about the Hackaday Prize and how we can get hackers here to solve some of our big issues. We have huge problems in all sorts of areas – Pollution, Water resources, Energy, Climate, Agriculture, Transportation, Education – the list is long.

On Saturday, May 2nd, at Workbench Projects hackerspace we will gather for “Bring-A-Hack @ Workbench Projects” to talk about our passion for making and hacking. We’ll discuss the 2015 Hackaday Prize which offers $500,000 in prizes for hackers who can build solutions to problems faced by a wide-range of people. What does that really mean? That’s one of the topics of the evening. Of course there will be plenty of time to show off your own hacks, ask for advice on difficult projects, and to socialize with everyone that attends. Please visit the event page for all the details.

Workbench Projects is an awesome hackerspace run by the team of Pavan and Anupama, guided by a distinguished team of Advisers, and supported by some fine Partners and Collaborators.

 

We Have a Problem: Mass Versus Local Production

Hackaday, we have a problem. We’re trying to engineer a brighter future; a task that calls for a huge mental leap. This week, instead of discussing a concrete problem, let’s gather around the digital campfire to gnaw on a thought exercise. In thinking abstractly I hope we’ll trigger a slew of ideas you can use as your entry in the 2015 Hackaday Prize in which you can win a Trip to Space or hundreds of other prizes.

Shipping Mass Produced vs. Producing Locally

This morning I was reading an interesting story about an email server that couldn’t deliver message to any ISP physically located more than 500 miles away. In that case it turns out that the limiting factor was misconfiguration and the speed of light. But it got me thinking about things we transport in bulk versus things being transported individually. I often think about the transport of finished goods and compare where we are now to the fabrication visions [Neal Stephenson] talked about in his novel The Diamond Age. In that picture of the future, it is common building blocks of matter that are delivered to every home and business and not finished goods. Interesting.

What kind of resources are consumed in local production versus centralized mass production? Is there merit in using technology to change the way we’ve always done some things? Certainly there will not be one answer for everything so let’s talk about a few examples that might be done differently.

Scenario #1: You send a greeting card with your hand-written message to your mother for her Birthday.

handwritten-message-cardThe way things work right now, you go to the store and pick out a card. You write a personal message inside, lick, stamp, and send it through the mail. The thing is, this card is probably already in a store down the street from your mother. What if you could digitize your handwritten message and have it printed on the card and delivered from a local repository? Take it a step further, assuming that these cards are bulk-printed in one central location and distributed widely, does it save any resources to decentralize the production of the cards and make production local so that the finished goods are not being transported more than 500 miles? And for those skeptics saying that you can’t add a check or cash to the card when done this way… yes you can!

Scenario #2: The meal is finished and just as you close the door to the dishwasher you hear a horrible crack as the plastic latch that holds the door closed breaks.

Recycled household appliancesStandard practice is that the part be ordered from a parts supplier (either by you or by a serviceman). These suppliers keep a stock of common parts which are well documented in a huge library of service manuals for the myriad of home appliances out there. But when you get right down to it, it’s just a little plastic bauble. Let’s assume all of these are made in a single factory in huge production runs that supply both the manufacturer and the legacy parts houses. What if instead of this you could have these parts 3D printed by a business within 500 miles of where they are needed. There are industrial-grade 3D printing techniques that produce parts strong enough to act as a replacement. Where do you come down on resource saving between the two methods?

Scenario #∞: It’s your turn to come up with an example.

We want to hear your ideas on local production versus centralized mass production. Don’t be afraid to share half-baked ideas. The entire point of We Have a Problem is to spark civil debate on issue which could lead to world-changing solutions. Help us start the idea mill and jump on to see where it takes us. Don’t forget to carry the inspiration you find into your entry for the Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

Time for the Prize: Big Water

I inadvertently started a vigorous debate a few weeks ago with the Time for the Prize post about a shower feedback loop. That debate was on the effect of curbing household water since households make up a relatively small percentage of total use. I think we should be thinking of solutions for all parts of the problem and so this week we’ll be looking for ideas that can help conserve water in large-scale use cases. Primarily these are agricultural and industrial but if you know of others feel free to make your case.

According to the United States Department of Agriculture, about 80% of all ground and surface water is used in agriculture. I’m not particularly interested in hearing a debate on water rights and the like (there’s a rather interesting article here if you want more on that). The agriculture industry produces food, and employs a lot of people. The conflict is of course long growing season versus lack of water compounded by severe drought. Even if we could move our food production elsewhere it would be a monumental undertaking to also relocate the infrastructure supporting it. Of course we need to look to the future, but can we leverage our engineering prowess now to conserve the water that is being used right now?

Enter with an Idea

Write down your ideas for agricultural and industrial water conservation as a project on Hackaday.io. Tag the project 2015HackdayPrize. Do this by next Monday and you’re in the running for this week’s awesome prizes.

You aren’t necessarily committing yourself to finishing out the build. At this point we want to get the idea machine rolling. One good idea could spark the breakthrough that makes a real difference in the world.

This Week’s Prizes

time-for-prize-prizes-week-3

We’ll be picking three of the best ideas based on their potential to help alleviate a wide-ranging problem, the innovation shown by the concept, and its feasibility. First place will receive a DSLogic 16-channel Logic Analyzer. Second place will receive a an Adafruit Bluefruit Bluetooth Low Energy sniffer. Third place will receive a Hackaday robot head tee.


The 2015 Hackaday Prize is sponsored by: