Dtto Explorer Modular Robot Wins 2016 Hackaday Prize

Dtto, a modular robot designed with search and rescue in mind, has just been named the winner of the 2016 Hackaday Prize. In addition to the prestige of the award, Dtto will receive the grand prize of $150,000 and a residency at the Supplyframe Design Lab in Pasadena, CA.

This year’s Hackaday Prize saw over 1,000 entires during five challenge rounds which asked people to Build Something that Matters. Let’s take a look at the projects that won the top five prizes. They exemplify the five challenge themes: Assistive Technologies, Automation, Citizen Scientist, Anything Goes, and Design Your Concept. dtto-main-image-cropped

Dtto — Explorer Modular Robot

Grand Prize Winner ($150,000 and a residency at the Supplyframe Design Lab): Dtto is modular robot built with 3D printed parts, servo motors, magnets, and readily available electronics. Each module consists of two boxes, rounded on one side, connected by a bar. The modules can join with each other in many different orientations using the attraction of the magnets. Sections can separate themselves using servo motors.

Dtto is groundbreaking in its ability to make modular robots experimentation available to roboticists and hobbiests everywhere by sidestepping what has traditionally been a high-cost undertaking. While it’s easy to dismiss this concept, the multitude of different mechanisms built from modules during testing drives home the power of the system.

imaging-dome-400x300

Affordable Reflectance Transformation Imaging Dome

Second Place ($25,000): Reflectance Transformation Imaging is a method of photographing artifacts multiple times with a fixed camera location but changing lighting locations. When these images are combined into an interface after the fact, it allows for different textures, surface features, and material properties to be observed. Currently there are no commercial version of hardware available for this technique.

laser-cut-optics-bench-400x300

Laser Cut Optics Bench

Third Place ($10,000): An optics bench is a series of jigs used to hold and precisely align elements for optical experiments. Traditionally this meant highly specialized equipment starting in the tens-of-thousands of dollars. But schools, hackerspaces, and individuals don’t need top-of-the-line equipment to begin learning about optics. The project has designed holders for salvaged optics and the ancillary materials to conduct experiments, and even includes a standardized carrying case design.

new-tilt-sensor-400x300

A New High Accuracy Tilt Sensor

Fourth Place ($10,000): This is a reimaging of a Linear Variable Differential Transformer (LVDT). Traditionally, tilt sensors based on LVDTs are built like a small tube with an iron core that can slide from one end to the other as the tube is tilted. This new sensor turns the tube into a hollow ring, and replaces the iron core with ferrofluid (a liquid with the properties of metal). What results is a brand new sensor with properties unavailable in previous tilt sensors.

mechaduino-400x300

Mechaduino

Fifth Place ($5,000). Stepper motors are known for accurate movement, but they are often used as open loop systems and prone to lose track of position either from missed steps or outside interference. Mechaduino adds a high accuracy magnetic encoder to any of several commonly available stepper motors, closing that loop and adding functionality. This includes positional awareness, but goes for beyond to velocity and torque control, and user interaction.

After The Prize: A Libre Space Foundation

The Hackaday Prize is the greatest hardware build-off on the planet, and with that comes some spectacular prizes. For the inaugural Hackaday Prize in 2014, the top prize was $196,418. That’s a handsome sum, and with that, the right hardware, and enough time, anything is possible.

The winners of the first Hackaday Prize was the SatNOGs project. The SatNOGs project itself is very innovative and very clever; it’s a global network of satellite ground stations for amateur cubesats. This, in itself, is a huge deal. If you’re part of a student team, non-profit, or other organization that operates a cubesat, you only have access to that satellite a few minutes every day — whenever it’s in the sky, basically. SatNOGs is a project to put directional, tracking antennas everywhere on Earth, all connected to the Internet. This is a project that gives global ground station coverage to every amateur-built cubesat.

It’s been two years since SatNOGs won the Hackaday Prize, so how are they doing now? I caught up with some of the midwest reps of SatNOGs at this year’s Hamvention, and the project is doing very well. The steerable antenna mount designed by the SatNOGs project is fantastic, some of the Earth stations are seeing a lot of use, and the network is growing.

Two years is a long time, and since then SatNOGs has evolved into the Libre Space Foundation, a not-for-profit foundation with a mission to promote, advance and develop free and open source technologies and knowledge for space.

The premier project for the Libre Space Foundation is the UPSat, the first Open Source satellite ever launched. For the last two years, this is what the Libre Space Foundation has been working on, and soon this satellite will be orbiting the Earth. The satellite itself was recently delivered, and next month it will be launched to the International Space Station aboard a Cygnus spacecraft. After that, it will be deployed to low Earth orbit from Nanoracks’ deployment platform on the station.

This is truly an amazing project. SatNOGs brought a network of ground stations to amateur cubesats orbiting the Earth, and now the Libre Space Foundation will put an Open Source satellite into low Earth orbit. All the documentation is available on Github, and this is the best the open hardware movement has to offer. We’re proud to have SatNOGs and the Libre Space Foundation proving that Open Hardware can change the world, and we can only hope this year’s winner of the Hackaday Prize has such an impact.

Beyond The Prize: Eye Driving Wheelchairs

For this year’s Hackaday Prize, we opened up five challenges for hackers and tinkerers to create the greatest hardware in five categories. We asked citizen scientists to build something to expand the frontiers of knowledge. We asked automation experts to build something more useful than the Internet of chocolate chip cookies. In the Assistive Technologies portion of the prize, we asked our community of engineers to build something that would open the world up to all of us.

While this year’s Assistive Technologies challenge brought out some great projects, there is one project from last year that must be mentioned. The Eyedrivomatic is a project to turn any electric wheelchair into a gaze-controlled robotic wheelchair, opening up the world to a population who has never had this level of accessibility at a price this low.

eyedriveomatic-hardwareThe Eyedrivomatac was the winner of last year’s Hackaday Prize, and given the scope of the project, it’s not hard to see why. The Eyedriveomatic is the solution to the problem of mobility for quadriplegics. It does this surprisingly simply by adding a servo-powered robot onto the joystick of an electric wheelchair, with everything controlled by eye gaze technology. While other systems similar to this exist, it’s the cost of the Eyedrivomatic system that makes it special. The robotic half of the project can be easily manufactured on any 3D printer, all the associated hardware can be bought for just a few dollars, and the software stack is completely open source. The entire system is interchangeable between different models of electric wheelchairs without any modifications, too.

Since winning last year’s Hackaday Prize, Patrick, Steve, and David of the Eyedrivomatic project received the grand prize of $196,883, and are now working towards starting their own production run of their revolutionary device. Right now, there’s a small cottage industry of eye gaze controlled wheelchairs cropping up, and the Eyedrivomatic team is busy building and assembling systems for electric wheelchair users across the globe.

The Eyedrivomatic is the best the Hackaday Prize has to offer. At its heart, it’s an extremely simple device — just a few 3D printed parts, a few servos, an Arduino, and some open source software. The impact the Eyedrivomatic has on its users can’t be understated. It is a liberating technology, one of the greatest projects we’ve seen, and we’ve very proud to have the Eyedrivomatic as a Hackaday Prize champion.

Continue reading “Beyond The Prize: Eye Driving Wheelchairs”

The Final 10 Entries of the 2016 Hackaday Prize

It has been quite a ride this year, watching entries pour in during the five challenges of the 2016 Hackaday Prize. Our yearly engineering initiative is designed to focus the skill, experience, and creativity of the world’s tinkerers, hackers, designers, and fabricators to build something that matters: things that change lives. The final ten entries, from more than 1,000, exemplify this mission.

For a brief overview of these entries, check out the videos below where we spend about ninty seconds recapping each one, along with some thoughts from the Hackaday Prize judges. These recap videos will be shown during the Hackaday Prize awards ceremony, held this Saturday during the SuperConference. I would love to invite you to attend but we’re completely sold out. You should, however, jump into the conference chat channel to talk about what’s going on, follow along with the badge crypto challenge, and hear where each entry finishes in real time as the top prizes are awarded.

2016 Hackaday Prize Finalists:

Congratulations to all ten of these finalists, who outdid themselves. Each of the 100 projects that moved past the preliminary rounds has already won $1,000, but these finalists will also be taking home one of five $5,000 prizes, two $10,000 prizes, $25,000 for the runner-up, or $150,000 plus a residency at the Supplyframe Design Lab for the winner of the Hackaday Prize. Which project is that going to be? Find out this Saturday.

Continue reading “The Final 10 Entries of the 2016 Hackaday Prize”

After The Prize: Vinduino

In my opinion, the best projects in the Hackaday Prize are the weirdest. Building a computer from sand is an admirable goal, and polar coordinate 3D printers are awesome. These projects obviously have limited utility, and there’s no accounting for taste, anyway. The real proof of how successful a project is, is the degree to which it can be spun out into a product. There’s a social proof in selling something, and last year we introduced the Best Product competition into the Hackaday Prize. The idea is simple: build something other people would want, and you’ll win a residency in the SupplyFrame Design lab to turn your project into a product.

The winner of last year’s Best Product competition in the Hackaday Prize was the Vinduino, From [Renier van der Lee], a water-saving irrigation project for vineyards. Over the last year, this project has seen some amazing success, saved a bunch of water, and proven itself to be an excellent entry into the Hackaday Prize.

Continue reading “After The Prize: Vinduino”

After The Prize: Chipwhisperer

We’re less than a week away from the Hackaday Superconference, where we’ll be announcing the winners of the Hackaday Prize. The Hackaday Prize is a celebration of the greatest hardware the Hackaday community has to offer, and in the past three years we’ve been running this amazing contest, we’ve seen some awesome stuff.

While not every project entered into the Hackaday Prize has gotten off the ground — the lawnmower-powered killacopter of decapitation is still tethered to its test stand — there have been some spectacular projects over the past few years that have already had an incredible impact in industry, academia, and the security industry. For the next few days, we’re going to revisit these projects, see how they’re doing, and look at the impact they’ve had on the world of Open Source hardware.

The first project we’re taking a look at is the ChipWhisperer a tool created by Colin O’Flynn to look at the secret insides of chips and firmware despite whatever embedded security is enabled on said chip. The ChipWhisperer was an entry into the first Hackaday Prize where it won second place. Since then, the ChipWhisperer has become the de facto hardware tool for investigating clock glitching, side channel analysis, and other exotic magic tricks that make security analysis so much fun.

Continue reading “After The Prize: Chipwhisperer”

Hackaday Prize Entry: Humidifeyes

Most of the entries in the Hackaday Prize Assistive Technology challenge solve an obvious problem. 3D printed prosthetics, a computer mouse for the mouth, and text to speech systems all have obvious uses. For his Hackaday Prize entry, [spandana] decided on something a little less obvious. He’s going after the scourge of dry eyes with Humidifeyes.

The problem of dry eyes seems a bit esoteric at first glance, but [spandana] is specifically designing this device for people with Steven Johnson’s Syndrome. It’s been mentioned that LASIK patients have dry eyes for months. There is, apparently, an opportunity here.

The mechanics of the device are pretty simple. The current prototype uses off the shelf safety glasses with a little foam around the edges as a chassis. Moisture is delivered from a reservoir to an ultrasonic vibrator. This is a very effective way to atomize liquids, and is small enough to fit on the frame of a pair of glasses.

Although this is the sort of project that’s just a bit weird and allows for too many puns, there’s the glimmer of something useful in here. Dry eyes are a problem, and short of a bottle of Visine, there’s not much to do about it.