Walk Your Pet Robot

Anyone who’s ever tried to build a bipedal robot will quickly start pulling their own hair out. There are usually a lot of servos involved, and controlling them all in a cohesive way is frustrating to say the least. [Mark] had this problem while trying to get his robot to dance, and to solve it he built a control system for a simple bipedal robot that helps solve this problem.

[Mark]’s robot has six servo motors per leg, for a total of 12 degrees of freedom. Commands are sent to the robot with an RC radio, and the control board that he built, called the Smart Servo Controller, receives the signals and controls the servos appropriately. There are 14 outputs for servos, operating at 12 bits and 50 Hz each, as well as 8 input channels. The servo controller can be programmed on a computer with user-selectable curves for various behaviors for each of the servos on the project. This eliminates the need to write cumbersome programs for simple robot movements, and it looks like it does a pretty good job!

Full disclosure: [Mark] currently has this project up on Kickstarter, but it is a unique take on complex robot control that could help out in a lot of different ways. Since you don’t need to code anything, it could lower the entry barrier for this type of project, possibly opening it up to kids or school projects. Beyond that, even veterans of these types of projects could benefit by not having to do as much brute-force work to get their creations up and moving around!

Continue reading “Walk Your Pet Robot”

Crowdfunding Follies: Proof That Ohm’s Law Is Arcane Knowledge

This is a cell phone case that can recharge a cellphone using energy captured from its own radio. It’s been featured on dozens of tech blogs, wowed judges at TechCrunch Disrupt, and it’s a Kickstarter Staff Pick. It’s also proof that nearly everyone in the media who claims any knowledge of technology has no idea behind the foundational properties of technology.

What it is

The Nikola Phone Case from Nikola Labs is a very special phone case for the iPhone 6 and Samsung Galaxy S6. The claims behind this cell phone case state it will recharge your battery by capturing radio energy put out by the cell phone itself. This means capturing RF from the WiFi and cellular transmitters. This captured energy is then converted into something that can recharge the phone, is sent to the USB or Lightning port, and – theoretically – the cycle of electrons turning into photons begins again.

Why it’s crap

Astonishingly, this is not a perpetual motion machine, a device that is completely impractical, or an outright fraud. It’s deceptively correct when it comes to the physics of this device, and as always implementation is everything.

Inside each Nikola Phone Case is a small antenna, boost converter, and circuitry to capture the RF energy coming from the phone. This phone case will actually harvest RF energy, but it will never be able to extend the life of the phone’s battery. Nikola Labs claims their phone case will recover 30% of a battery’s life by harvesting RF energy and using that energy to recharge the phone. However, the energy for this RF energy harvesting scheme comes from the phone itself. The captured energy that would – ideally – end up at a cell phone tower or WiFi router will disappear into this cell phone case. This results in both a dramatic decrease in reception and most likely an increase in power draw due to the phone increasing its transmit power.

To Nikola Labs’ credit, the FAQ on their Kickstarter does address concerns that a phone’s transmitter and antenna may be affected:

The device may change the impedance and overall pattern slightly. We are performing detail characterization of these changes, if any.

Nikola Labs has not performed due diligence on their design. There is a method that will report the RSSI of the cellular radio in an Android phone. Any competent engineer would, upon first seeing this device, figure out if signal strength is affected. This can be done in a few dozen lines of Java. It can be done in under an hour by someone who has never programmed an Android device. Nikola Labs does not provide a comparison of the signal strength of a phone both with and without their case. This is evidence of incompetence, if not malice.

Simply by definition, any device that captures RF energy will ‘shadow’ the transmission. Just like putting a solar panel in front of a flashlight, energy will be captured, but the overall light output of the flashlight and solar panel system will decrease. Nikola Labs has an answer to that:

The device harvests the RF energy around the phone, which is usually absorbed by the hand holding the phone.

It is true that the human body will absorb RF coming out of a phone. WiFi works on the same frequencies as a microwave oven, and defrosting a piece of chicken in a microwave isn’t that much different from grabbing an antenna on a router. Lower powers and different geometries aside, you are right now absorbing microwaves from a WiFi router.

The best way of understanding why simply holding a phone isn’t a very big deal is coming at it from the direction of designing a smart phone. One of the biggest drivers behind the design of a cell phone is how long it will last on a single charge. You can design a phone with a powerful CPU and a huge screen, but the battery won’t last long. Likewise, the engineers that design cell phones will put the antennas in an out of the way place, where they won’t be absorbed by the human body. The Nikola Labs case destroys the engineering decisions inside each cell phone. Think about it; if power was wasted inside a cell phone, wouldn’t engineers at Apple and Samsung work to reduce that waste?

Why everything else is crap, too

There is simply no excuse why hundreds of people would give tens of thousands of dollars to a company that makes outrageous claims with zero evidence. One could attribute this to the public’s severe lack of understanding when dealing with electricity or radio. This, in my opinion, is far too kind.

Nikola Labs’ Kickstarter would not exist without the help of Kickstarter itself and members of the tech media. We first heard of Nikola Labs at TechCrunch Disrupt, where four judges could not find anything wrong with this technology. The presentation at Disrupt went on to be covered by Engadget and a flurry of other tech blogs. Now, dozens of other tech blogs have reported on this Kickstarter, and Kickstarter itself has named it a Staff Pick.

Yes, there are stupid people out there. There are people who will throw money at anything. There are also people who will Barnum up the place sell snake oil to rubes. The fact that Kickstarter would endorse something without a technical assessment defies belief. The only conceivable reason this could be a Staff Pick on Kickstarter is because Kickstarter believes it will be funded, thus earning them a percentage of gross.

This is the end of capitalism, folks. No longer do you need to innovate and make a better mouse trap. All you need to do is convince enough people that you’ve made a better mouse trap.

Hacklet 51 – Crowdfunding Projects

Ah crowdfunding. You might say we have a love/hate relationship with it here at Hackaday. We’ve seen some great projects funded through sites like Kickstarter, IndieGoGo, and the like. We’ve also seen projects where the creators were promising more than they could deliver. While the missed deliveries and outright scams do get a lot of press, we believe that crowdfunding in general is a viable platform for getting a project funded.

Closer to home, Hackaday.io hosts thousands of projects. It’s no surprise that some of these have had crowdfunding campaigns. This week’s Hacklet focuses on those projects which have taken the leap into the crowdfunding arena.

matrixWe start with [Louis Beaudoin] and SmartMatrix. [Louis] has created an awesome Teensy 3.1 based system for displaying images, animated graphics, and random patterns on a 32×32 RGB LED panel. The LED panel is the same type used in commercial LED billboards. SmartMatrix is open source, and includes extra pins for hacking. Our own [Mike Szczys] hacked the SmartMatrix to create a 1-pixel PacMan clone. [Louis’] Kickstarter is almost over, and needs a huge boost for fully-assembled SmartMatrix to make its goal. Even if the campaign isn’t successful, we think its a great project and you can always get a solder-it-yourself kit from The Hackaday Store!

psdrNext up is [Michael R Colton] with PortableSDR. PortableSDR was one of the five finalists in The 2014 Hackaday Prize. This pocket-sized software defined radio transceiver started as a ham radio project: a radio system which would be easy for hams to take with them on backpacking trips. It’s grown into so much more now, with software defined radio reception and transmission, vector network analysis, antenna analysis, GPS, and a host of other features. [Michael] raised a whopping $66,197 in his Kickstarter campaign, and he’s already delivered the hand assembled prototypes to their respective backers! Even the lower level rewards are awesome – [Michael’s] PSDR key chains are actually PCBs which can be turned into maple compatible ARM devboards with just about $10 of additional parts.

chip whisperNext we have The ChipWhisperer, [Colin Flynn’s] embedded security testing system, which won second place in the 2014 Hackaday Prize. We’ve covered both [Colin] and the ChipWhisperer  several times on the Blog. You can always buy the full ChipWhisperer from [Colin’s] company, NewAE Technology Inc. At $1500 USD, the ChipWhisperer is incredibly affordable for a hardware security tool. That price is still a bit high for the average hacker though. [Colin] created a Kickstarter campaign for a light version of the ChipWhisperer. This version is a great platform for learning hardware security, as well as an instrument for testing embedded systems. The campaign was a huge success, raising $72,079.

wingboardNot every crowdfunding project has to be a massive megabuck effort though. [ZeptoBit] just wanted to solve a problem, he needed a WiFi shield for Arduino using an ESP8266 module. ESP8266 WiFi modules have been all the rage for months now, but they can be a bit of a pain to wire up to an Arduino Uno. The dual row .100 headers are not bread board friendly. The ESP8266’s 3.3 V power and interface requirements mean that a regulator and level shifters are needed to get the two boards working together. [ZeptoBit] put all that and more on his wingboard. It worked so well that he launched a Kickstarter campaign for a small run of boards – his initial goal was kr3,500, or $425 USD. He ended up raising kr13,705, or $1665 USD. Not bad at all for a hobby project!

If this isn’t enough crowdfunding goodness for you, check out our Crowdfunding list! That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Olimex Claims the World’s First $9 Computer Costs $39

The C.H.I.P. from Next Thing Co. bills itself as the world’s first nine dollar computer. That’s not a lie; their Kickstarter took in over two million dollars for a tiny single board computer with composite Video, WiFi, Bluetooth 512MB of RAM, 4GB of storage, and a 1GHz CPU. That’s a complete computer, sans keyboard, mouse, and monitor. You won’t get that with the $35 Raspberry Pi – you’ll need to add a WiFi adapter and an SD card for the same functionality – and you won’t get that with any other single board computer.

Understandably, the C.H.I.P. is already extremely successful. The company behind it has about 50,000 pre-orders, and people lined up to wait until well into next year for this computer. Exactly how Next Thing Co. managed to build a single board computer and send it out the door for nine dollars is a question that has yet to be answered, and is leaving more than a few people puzzled.

The Olimex blog has given their opinion of the C.H.I.P, and if that’s to be believed, the news isn’t good. The guys at Olimex know their stuff when it comes to making cheap single board computers; they have more than a few for sale, and they know what the Flash and DRAM market is like. To them, it’s impossible to sell a computer like the C.H.I.P. at $9. A quote from Allwinner for a similar module is $16 at the quantity Next Thing Co. would be looking at. That’s just the module with RAM and Flash – no Wifi, no board, no connectors. How could it be possible to sell this computer for only $9?

Continue reading “Olimex Claims the World’s First $9 Computer Costs $39″

Hackerspace Happeninging: A Booc For C-Base

In the annals of hackerspace history, there’s one space that stands above the rest. It’s c-base, the crashed spaceship below Berlin that’s also one of the first hackerspaces in the world. Before NYC Resistor, Noisebridge, and every other building filled with tools and cool people, there was c-base.

Although the Hackerspace movement has only been around for a little less than a decade now, c-base itself is much, much older. It was founded way back in 1995, marking this year as the second decade of c-base’s existence. A few of the members of c-base are celebrating this occasion by publishing a book on the vast and storied history of their hackerspace.

The mythology of c-base includes a space station crashing in the middle of Berlin, with the giant, famous disco ball in Berlin being the station’s antenna. Yes, it’s weird, but all good hackerspaces have some sort of irreverent mythos surrounding them. The c-booc will document the twenty year long excavation of the space station, chronicling how this hackerspace came to be.

The booc is a Kickstarter project, and if funded, will be available for pickup at the Chaos Communication Camp this August

Hackaday Links: May 31, 2015

Back in the mid-70s, [Paul Horowitz] (who has an incredible Wikipedia entry, by the way) started teaching Physics 123 at Harvard. Simple electronic circuits, solving problems with silicon; simple stuff like that. His lecture and lab notes started getting a following, and after Xeroxing a few dozen copies, he realized he had written a book. It was The Art of Electronics, and Ladyada interviewed this master of hand drawn schematics. A great interview and great camera work, too.

Like hackathons? How about one at CERN? It’s happening October 2 through October 4. The aim this year is to have a humanitarian and social impact thanks to technology. The projects last year were very good; everything from cosmic ray detectors to a $10 inflatable fridge for field operations.

You want viral advertising for your movie? This is how you do viral advertising for your movie. It’s Hackerman’s Hacking Tutorials, and we’d really like to know how they did the 80s graphics with modern computers. It’s not like you can just go out and buy a Video Toaster these days…

Previously available only through group buys, the Flir Lepton module is now available at Digikey.

We have hit the singularity. We have stared into the abyss, and the abyss has stared into us. There was a kickstarter to fund a trailer for another, bigger kickstarter. Relevant xkcd right here.

The Tymkrs had a lamb roast, and what better way to do that than with a huge lathe? Put some charcoal on the ways, turn it at a low RPM, and eventually you’ll have a meal. Bonus points for the leaf blower manifold, a gold star for carving it with a sawzall.

Programmable Pump Keeps Its Stick On The Ice

Need to water your plants? Pump some coolant on a mill? Fill a watermelon with booze? Never fear, because the third greatest Canadian behind [Alan Thicke] and [Bryan Adams] is here with the solution to all your problems! It’s a cordless pump for desktop CNC, repair, and horticulture that automates daily chores and pumps out exact amounts of liquid.

[Chris], [AvE], Bright Idea Workshop, or, ‘that guy that records videos in his shop’ is rather well-known around these parts; we’ve seen him make an $80,000 gold-plated cutting fluid pot, a copper laminate desk, and recharge his cell phone with a car and a pencil. He’s very, very good at futzing around in his shop and the dialog is the closest YouTube will ever get to Click and Clack the Tappet Brothers, albeit without wheezing laughter.

The Kickstarter is for a rechargeable cordless pump, controlled by a microcontroller, that dispenses liquids of varying viscosity onto the item of your choice. It’s perfect for adding cooling to a drill press, watering plants, or something or everything involving beer.

Details on the pump are a little sparse, but given the liquid never touches the pump we’re putting money on some type of peristaltic pump. Add volume measurement, programmable flow rate adjustment, a timer, and dispensing programmable volumes of liquid, and you’ve got something useful.

Thanks [Scott] for the tip.