Hackaday Retro Edition: A New Commodore 64 Case

Some time in the 80s, the plastic injection molds for the Commodore 64C, the Commodore 128, and the Plus/4 were shipped from somewhere in Asia to the great Commodore Mother Brain in West Chester, Pennsylvania. These molds had already produced a million or two cases, but there were some issues with production – too much waste, or something like that. A mechanical engineer took a look at the molds, sent out some recommendations, and moved the 2500 pound molds to a corner of the building.

For some time after a gray day in April, 1994 these molds sat in a West Chester, Pennsylvania warehouse until they were sold off. They made their way to a plastics manufacturer around Dallas, Texas where they sat for twenty years. All things must pass, sometimes several times, and this plastics manufacturer closed down, contacted an auctioneer, and began to sell off some of their equipment.

The hero of our story, [Dallas Moore], owns a small business, buying and selling everything from Barbie dolls to antiques. He found an ad for an auction at a plastics manufacturing plant in the newspaper, and figuring he could find something interesting, headed out to the auction preview.

The auctioneer at this liquidation sale asked [Dallas] what he did, and mentioned there was something pretty cool tucked away in a warehouse full of hardened steel molds. Something about molds for old computers. These were the molds for the Commodore 64C, Commodore 128, and the Commodore Plus/4. A literal crucible of computing history, stacked on a pallet and up for sale.

The auctioneer said one of his friends was interested in the molds, and thought they would make a neat coffee table. Something about this struck [Dallas] the wrong way and for the entire drive home he thought about someone taking history and turning it in to a piece of furniture. He decided to buy these molds and lugged the three 2500 pound pieces of hardened steel to his shop. Not wanting to let a good piece of history go to waste, he contacted another plastics manufacturer, planned a run of a thousand or so Commodore 64C cases in red, white, and blue. [Dallas] is funding the whole production run through Kickstarter.

To me, this is one of the greatest retrocomputing successes in recent memory. There will always be someone putting SD cards in old computers, getting them on the Internet (and especially pointed towards our retro edition), and cloning complete systems in FPGAs. This, though, is a clear example of someone recognizing the historical importance of several thousand pounds of steel, realizing there’s a market out there, and doing the leg work to remanufacture these pieces of history.

I put in my $45 for a red one, and I tipped off [Bil Herd], designer of the C128 and Plus/4, to this Kickstarter. He’s been talking with [Dallas], there I’m sure he’ll chime in on the comments with some retellings of Commodore battle stories.

If it arrives in time, I’ll be bringing my limited-edition red 64C case to the Vintage Computer Festival in Wall, NJ April 17-19. That’s a plug for the event. If you’re in the area, you should come.

EDIT: [Dallas] has a different story of where the molds came from.

ChipWhisperer Hits Kickstarter

Even the most well designed crypto algorithms can be broken if someone is smart enough to connect an oscilloscope to a processor. Over the last 15 years or so, an entire domain of embedded security has cropped up around the techniques of power and side channel analysis. The tools are expensive and rare, but [Colin O’Flynn] and the ChipWhisperer are here to bring a new era of hardware security to the masses.

The ChipWhisperer was the second place winner of last year’s Hackaday Prize. It’s an interesting domain of security research, and something that was previously extremely expensive to study. If you’re looking for a general overview of what the ChipWhisperer does, you might want to check out when we bumped into [Colin] at DEFCON last year.

While the original goal of the ChipWhisperer was to bring the cost of the tools required for power and side channel analysis down to something a hackerspace or researcher could afford, this was still too expensive for a Kickstarter campaign. To that end, [Colin] designed the ChipWhisperer Lite, a cut-down version, but still something that does most of what the original could do.

There are two parts to the ChipWhisperer Lite – the main section contains a big microcontroller, a big FPGA, and a high gain, low noise amplifier. This is the core of the ChipWhisperer, and it’s where all the power analysis happens. The other part is a target board containing an XMega microcontroller. This is where you’ll run all your encryption algorithms, and where you’ll find out if they can be broken by power analysis. The main board and target board are held together by a break-away connection, so if you want to run a power analysis on another board, just snap the ChipWhisperer in half.

[Colin] is offering up a ChipWhisperer Lite for around $200 USD – far, far less than what these tools cost just a year ago. We’re looking forward to a successful campaign and all the neat findings people with this board will find.

Ask Hackaday: Bringing Your Design to Market

While many of us have made and documented our open source projects, not many of us have tried to sell our design to the masses. [Scott] developed, marketed, and “bootstrapped” a cool looking MIDI controller. Now, before you get your jumpers in a bunch – the project is completely open source. [Scott] documented the entire process of not only the design, but the trials and tribulations of bringing it to market as well. Calculating costs, FCC testing and the many other challenges of bringing a consumer electronics device to market are all detailed in his blog. Join me while we look at the highs and lows of his interesting and eventually worthwhile journey.

Putting yourself into a game where orders are in the tens of thousands, with hundreds of thousands of dollars changing hands is not easy when you’re just a guy with an idea and a soldering iron. [Scott] was up for the challenge, however. He quickly realized that much of the margin is spent on advertising and to cover risk. On his last order, some of the paint was chipping off. He had to fix the paint and repackage everything – all at his cost.

He also talks about the learning process of product design along the way. His original idea was to make a volume controller, but couldn’t sell a single one. He was forced to redesign the software into the MIDI controller as it exists today. He tried to launch a Kickstarter, but was rejected. This turned out to be a good thing, however, because he would have wound up kickstarting a product that didn’t work.

For advertising, he relied on Google and made some extremely detailed tutorials for his product. Many of them can be used for other MIDI controllers, and often come up in Google searches. Smart. Very smart.

Be sure to check out the video below, where [Scott] gets into some capacitive touch design theory, and talks about how not to cut your final product in half while on the CNC.

Have any of you ever tried to mass produce and sell one of your designs? Let us know in the comments!

Continue reading “Ask Hackaday: Bringing Your Design to Market”

Hackaday Links: The Last One Of 2014

The guy behind the Microslice, a tiny Arduino-controlled laser cutter, has a new Kickstarter out. It’s called the Multibox PC, and it’s exactly what you need if you want to turn a Raspi, Banana Pi, HummingBoard, or Odroid U3 into an all-in-one desktop. 14″ 1366 x 768 LCD, and speakers turns dev boards into a respectable little Linux box.

If you’re learning to design schematics and lay out PCBs, you should really, really think about using KiCAD. It’s the future. However, Eagle is still popular and has many more tutorials. Here’s another. [Mushfiq] put together a series of tutorials for creating a library, designing a schematic, and doing the layout.

Another kickstarter wristwatch. But wait, this thing has a circular display. That’s really cool. It’s a 1.4″ 220×220 pixel, 262k color display. No, the display doesn’t use a polar coordinate system.

[Jari] wrote a digital logic simulator, Atanua, started selling licenses, and figured out it wasn’t worth developing on his own anymore. As promised, Atanua is now open source. If you want to look at the finances behind Atanua, here you go.

In 1970, you didn’t have a lot of options when it came to memory. One of the best options was Intel’s 1405 shift register – 512 bits of storage. Yes, shift registers as memory. [Ken Shirriff] got his hands on a memory board from a Datapoint 2200 terminal. Each of the display boards had 32 of these shift registers. Here’s what they look like on the inside

There’s a lot of talk about North Korean hackers, and a quick review of the yearly WordPress stats for Hackaday puts a tear in our eye. This year, there were fifty-four views from the Democratic People’s Republic of Korea. That’s just great. It’s awesome to see the hacker ethos make it to far-flung lands and through highly restricted firewalls. There’s still a long road ahead of us, though, and we’ll redouble our efforts on bringing the hacker mindset to Tuvalu and Saint Helena in the year 2015.

Christmas Lights And Ships In A Bottle

Thanksgiving was last week, and Christmas has been invading department stores for two or three months now, and that can only mean one thing: it’s time to kill a tree, set it up in your living room, and put a few hundred watts of lights on it. All those lights, though; it’s as if Christmas lights were specifically invented as fodder for standup comedians for two months out of the year. Why can’t someone invent wireless Christmas lights?

We don’t know if it’s been invented, but here’s a Kickstarter campaign that’s selling that same idea. It’s called Aura, and it’s exactly what it says on the tin: wireless Christmas lights, controllable with a smartphone. If it works, it’s a brilliant idea.

Continue reading “Christmas Lights And Ships In A Bottle”

Phoenard, A Prototyping Gadget

The Hackaday Prize party wasn’t just about the five finalists; actually, there were more THP entries in attendance – All Yarns Are Beautiful, OpenExposer, M.A.R.S., a 3D scanner, and a few more that I’m forgetting – than actual finalists. In addition, a number of people brought projects that had never seen the light of day, like [Ralf] and [Pamungkas]’ Phoenard.

Phoenard is a Kickstarter project the guys launched at the prize party, something they could attend as a little side trip after manning the ‘maker’ part of the Atmel booth at Electronica. They’ve come up with a tiny handheld device that can only be described as a ‘gadget’. It has a touchscreen, a battery, an MegaAVR, a few connectors, and not much else. What makes this project cool is how they’re running their applications. A bootloader sits on the AVR, but all the applications – everything from a GSM phone to an MP3 player – lives on a microSD card.

The Phoenard guys have come up with a few expansion modules for Bluetooth LE, GSM, GPS, and all the usual cool modules. Plugging one of these modules into the back of the device adds capability, and if that isn’t enough, there’s an old 30-pin iPhone connector on the bottom ready to accept a prototyping board.

Video of these guys below.

Continue reading “Phoenard, A Prototyping Gadget”

Tesla Truck Wants to Bring The Makerspace To The Children

With so many budget cuts, many public schools find themselves having to cut “unnecessary” programs such as shop, art, and music classes. They simply can’t afford to keep those things running and also teach other important concepts like math, language, and history. The obvious side effect is that kids don’t have a safe place to be creative and learn to make things with their hands.

Luckily, the maker movement has been rapidly growing over the last few years with makerspaces popping up all over the globe. These places are picking up the slack left behind by the budget cuts that hurt our public schools. But while makerspaces are getting more and more common, they still don’t exist everywhere. Even in those places lucky enough to have a makerspace, not everyone is aware that they exist and not everyone can afford to be a full-time member. This is where Tesla Truck comes in.

The Tesla Truck’s mission statement is “to provide a cutting-edge, mobile, hands-on STEM lab, where students, teachers, and makers can teach, learn, collaborate, create, and innovate.” It’s a noble cause for sure, but how do they plan to do this? This group intends to outfit a truck with the kinds of tools every maker dreams of. These would include a 3D printer, laser cutter, CNC plasma cutter, mill and lathe, electronics bench, and more.

Obviously just having a bunch of high-end tools is not going to cut it. Someone is going to have to teach people how to properly use these tools. The group behind the Tesla Truck is made up of educators, engineers, and published researches who have been doing this kind of thing for a while now. This group has been packing up their own personal tools into their hatchbacks and setting up shop in school classrooms around New York City, only to have to break down at the end of the day and bring them all home again. Together with the students, this group has built things like robots, quadcopters, and water purifiers. The Tesla Truck will give them the ability to reach more people much more easily.

The Tesla Truck is looking to raise a total of $62,804.01 to make their dream a reality. They have raised more than half of that outside of crowd funding. They’ve now turned to Indiegogo to raise the last $24,300. They have ten days left and they are almost halfway to their goal. You can watch their campaign video below to get a better feel for what they are all about. Continue reading “Tesla Truck Wants to Bring The Makerspace To The Children”