We Recommend That You Enter a Cyclocopter From The Front

It’s crazy to think that we’ve optimized the heck out of some types of powered flight when there are entire theories and methods that haven’t even seen many government research dollars, let alone the light of day. The cyclocopter is apparently one of those. It was dreamt up around the same time as a helicopter, but was too audacious for the material science of the time. We have helicopters, but [Professor Moble Benedict] and his graduate students, [Carl Runco] and [David Coleman], hope to bring cyclocopters to reality soon.

For obvious reasons they remind us of cyclocranes, as the wings rotate around their global axis, they also rotate back and forth in a cycloidal pattern around their local axis. By changing this pattern a little bit, the cyclocopter can generate a wide variety of thrust vectors, and, hopefully, zip around all over the place. Of course, just as a helicopter needs a prop perpendicular to its main rotor on its tail to keep if from spinning around its axis, the cyclocopter needs a prop facing upwards on its tail.

It does have a small problem though. The bending force on its wings are so strong that they tend to want to snap and fly off in all different directions. Fortunately in the past hundred years we’ve gotten ridiculously good at certain kinds of material science. Especially when it comes to composites we might actually be able to build blades for these things. If we can do that, then the sky’s the limit.

[Professor Benedict] and his team are starting small. Very small. Their first copter weighs in under 30 grams. It took them two years of research to build. It will hopefully lead to bigger and bigger cyclocopters until, perhaps, we can even build one a person can get into, and get out of again.

Hacker Helps His Mother Lift Her Walker When He’s Not There

[typo]’s mother gets around with a walker. It’s a great assistive device until she has to lift the heavy thing up into her car. Noting that this was a little cruel he did as any hacker would and found a way to automate the process.

The build is pretty cool. She had to give up her passenger seat, but it’s a small price to pay for independence. He removed the door paneling on the passenger side. Then he welded on a few mounting points. Next he had to build the device.

The well-built device has a deceptively simple appearance. The frame is made from CNC milled panels and the ever popular aluminum extrusion. It uses a 12V right angle drive and some belting to lift the chair. There’s no abundance of fancy electronics here. A toggle switch changes the direction of the motor. There are some safety endstops and an e-stop.

Now all she has to do is strap the walker to the door. She picks the direction she wants the lift to go and presses a button. After which she walks the short distance to the driver’s seat, and cruises away.

Maybe Your Next Robot Should Be a Cyclocrane

At my university, we were all forced to take a class called Engineering 101. Weirdly, we could take it at any point in our careers at the school. So I put it off for more interesting classes until I was forced to take it in one of my final years. It was a mess of a class and never quite seemed to build up to a theme or a message. However, every third class or so they’d dredge up a veritable fossil from their ranks of graduates. These greybeards would sit at the front of the class and tell us about incredible things. It was worth the other two days of nondescript rambling by whichever engineering professor drew the short straw for one of their TAs.

The patent drawing.
The patent drawing.

One greybeard in particular had a long career in America’s unending string of, “Build cool stuff to help us make bad guys more deader,” projects. He worked on stealth boats, airplanes with wings that flex, and all sorts of incredibly cool stuff. I forgot about the details of those, but the one that stuck with me was the Cyclocrane. It had a ton of issues, and as the final verdict from a DARPA higher-up with a military rank was that it, “looked dumb as shit” (or so the greybeard informed us).

A Cyclo-What?

The Cyclocrane was a hybrid airship. Part aerodynamic and part aerostatic, or more simply put, a big balloon with an airplane glued on.  Airships are great because they have a constant static lift, in nearly all cases this is buoyancy from a gas that is lighter than air. The ship doesn’t “weigh” anything, so the only energy that needs to be expended is the energy needed to move it through the air to wherever it needs to go. Airplanes are also great, but need to spend fuel to lift themselves off the ground as well as point in the right direction. Helicopters are cool because they make so much noise that the earth can’t stand to be near them, providing lift. Now, there’s a huge list of pros and cons for each and there’s certainly a reason we use airplanes and not dirigibles for most tasks. The Cyclocrane was designed to fit an interesting use case somewhere in the middle.

In the logging industry they often use helicopters to lift machinery in and out of remote areas. However, lifting two tons with a helicopter is not the most efficient way to go about it. Airplanes are way more efficient but there’s an obvious problem with that. They only reach their peak efficiency at the speed and direction for which their various aerodynamic surfaces have been tuned. Also worth noting that they’re fairly bad at hovering. It’s really hard to lift a basket of chainsaws out of the woods safely when the vehicle doing it is moving at 120mph.

The cyclocrane wanted all the efficiency of a dirigible with the maneuverability of a helicopter. It wanted to be able to use the effective lifting design of an airplane wing too. It wanted to have and eat three cakes. It nearly did.

A Spinning Balloon with Wings

Four wings stick out of a rotating balloon. The balloon provides half of the aerostatic lift needed to hold the plane and the cargo up in the air. The weight is tied to the static ends of the balloon and hang via cables below the construction. The clever part is the four equidistant wings sticking out at right angles from the center of the ship. At the tip of each wing is a construction made up of a propellor and a second wing. Using this array of aerofoils and engines it was possible for the cyclocrane to spin its core at 13 revolutions per minute. This produced an airspeed of 60 mph for the wings. Which resulted in a ton of lift when the wings were angled back and forth in a cyclical pattern. All the while, the ship remaining perfectly stationary.

sdsafd
There’s a really great description of its operation in the article this photo came from.

 

It really didn't like strong winds.
It really didn’t like strong winds.

Now the ship had lots of problems. It was too heavy. It needed bigger engines. It was slow. It looked goofy. It didn’t like strong winds. The biggest problem was a lack of funding. It’s possible that the cyclocrane could have changed a few industries if its designers had been able to keep testing it. In the end it had a mere seven hours of flying time logged with its only commercial contract before the money was gone.

However! There may be some opportunity for hackers here. If you want to make the quadcopter nerds feel a slight sting of jealousy, a cyclocrane is the project for you. A heavy lift robot that’s potentially more efficient than a balloon with fans on it is pretty neat. T2here’s a bit of reverse engineering to be done before a true performance statement can be made. If nothing else. It’s just a cool piece of aerospace history that reminds us of the comforting fact that we haven’t even come close to inventing it all yet.

If you’d like to learn more there’s a ton of information and pictures on one of the engineer’s website. Naturally wikipedia has a bit to say. There’s also decent documentary on youtube, viewable below.

Photo Credits: Rob Crimmins and Hal Denison

Contender For World’s Most Unsettling Drone?

We’re not sure what FESTO is advertising with their odd flying beach ball. Amongst inspirational music it gently places its translucent appendage over a water bottle and then engulfs it with an unsettling plastic sound. With a high pitched whine it hovers away with its prey and deposits it in the hand of a thirsty business man, perhaps as a misguided nurturing instinct.

Despite discovering a new uncanny valley, the robot is pretty cool. It appears to a be a hybrid airship/helicopter on a small-scale. The balloon either zeros out the weight of the robot or provides slightly more lift. It’s up to the propellers to provide the rest.

We like the carbon fiber truss around the drone. It’s a really slick build with barely an untamed wire. This seems like a much safer design than a quadcopter for indoor flying. If its end effector wasn’t so creepy it would be even cooler. Video after the break.

Continue reading “Contender For World’s Most Unsettling Drone?”

Retrotechtacular: Forces Acting On An Airfoil

floating film title We’ve probably all experimented with a very clear demonstration of the basic principles of lift: if you’re riding in a car and you put your flattened hand out the window at different angles, your hand will rise and fall like an airplane’s wing, or airfoil. This week’s Retrotechtacular explains exactly how flight is possible through the principles of lift and drag. It’s an Army training documentary from 1941 titled “Aerodynamics: Forces Acting on an Air Foil“.

What is an airfoil? Contextually speaking, it’s the shape of an airplane’s wing. In the face of pressure differences acting upon their surfaces, airfoils produce a useful aerodynamic reaction, such as the lift that makes flight possible. As the film explains, the ideas of lift and drag are measured against the yardstick of relative wind. The force of this wind on the airfoil changes according to the acute angle formed between the airfoil and the direction of the air flow acting upon it. As you may already know, lift is measured at right angles to the relative wind, and drag occurs parallel to it. Lift is opposed by the weight of the foil, and drag by tension.

wind tunnel testing

Airfoils come in several types of thicknesses and curvatures, and the film shows how a chord is derived from each shape. These chords are used to measure and describe the angle of attack in relation to the relative wind.

The forces that act upon an airfoil are measured in wind tunnels which provide straight and predictable airflow. A model airplane is supported by wires that lead to scales. These scales measure drag as well as front and rear lift.

In experimenting with angles of attack, lift and drag increase toward what is known as the stalling angle. After this point, lift decreases abruptly, and drag takes over. Lift and drag are proportional to the area of the wing, the relative wind velocity squared, and the air density. When a plane is in the air, drag is a retarding force that equals the thrust of the craft, or the propelling force.

monometer tubesAirfoil models are also unit tested in wind tunnels. They are built with small tubes running along many points of the foil that sit just under the surface. The tubes leave the model at a single point and are connected to a bank of manometer tubes. These tubes compare the pressures acting on the airfoil model to the reference point of atmospheric pressure. The different liquid levels in the manometer tubes give clear proof of the pressure values along the airfoil. These levels are photographed and mapped to a pressure curve. Now, a diagram can be made to show the positive and negative pressures relative to the angle of attack.

In closing, we are shown the effects of a dive on lift as an aircraft approaches and reaches terminal velocity, and that lift is attained again by pulling slowly out of the dive. Remember that the next time you fly your hand-plane out the window.

Continue reading “Retrotechtacular: Forces Acting On An Airfoil”

Ignored disabled man builds his own damn elevator

diy_wheelchair_lift

There’s an old saying that goes something like, “When the going gets tough, the tough builds their own 5-story wheelchair lift.”

Actually we’re pretty sure that’s not even close to how the saying goes, but when his local council turned their backs on [Dmitry Bibikow’s] request for wheelchair access to his apartment, that’s exactly what he did.

[Dmitry], an avid mountaineer, was injured in a climbing accident that left him without the use of his legs. Unfortunately for him, he and his family reside on the 5th floor of an apartment building that was not handicap accessible. Rather than move out, he asked the local council to install an elevator, which they agreed to.

Time passed, and as the project sank deeper and deeper into a mire of bureaucracy, [Dmitry] began to lose hope of ever seeing an elevator installed. After six years of relying on friends to help him get in and out of his apartment, he took matters into his own hands and installed a chair lift just off the side of his balcony.

According to [Dmitry] it works great, and he can get from the front door to his apartment well before his more able neighbors make it up the stairs. So far, the city council has not said anything about the lift, and he hopes it stays that way.

Robotic helicopter that can grasp a payload

Like the Grand Theft Auto RC missions come to life, this helicopter can grasp objects for transport. They don’t have to be a special size or shape, and it can lift them even if they are not centered. This is thanks to a load-balancing hand (originally developed as a prosthesis) that relies on flexible joints and a tendon-like closing mechanism. As you can see in the video, the light-weight chopper has an on-board camera so that the operator can see what is being picked up. This little guy has no problem lifting objects that are over one kilogram while remaining stable in the air.

[Thanks Paul]