Print Tasty Treats With MIT’s Ice Cream Printer

Ice Cream Printer

Three MIT students decided that 3D printers just aren’t interesting enough on their own any more. They wanted to design a new type of printer that would really get young kids engaged. What’s more engaging to children than sugary treats? The team got together to develop a new 3d printer that prints ice cream.

The machine is built around a Solidoodle. The Solidoodle is a manufacturer of “accessible” 3d printers. The printer is enclosed inside of a small freezer to keep things cold during the printing process. On top of the machine is a hacked Cuisinart ice cream maker. The machine also contains a canister of liquid nitrogen. The nitrogen is used to blast the cream as it leaves the print head, keeping it frozen for the 15 minute duration of the print.

It sounds like the team ran into trouble with the ice cream melting, even with the liquid nitrogen added. For a single semester project, this isn’t a bad start. Be sure to watch the clip of the machine running below.

Continue reading “Print Tasty Treats With MIT’s Ice Cream Printer”

Retrotechtacular: The Cryotron Computer


Have you ever heard of a Cryotron Computer before? Of course not. Silicon killed the radio star: this is a story of competing technologies back in the day. The hand above holds the two competitors, the bulkiest one is obviously the vacuum tube, and the three-legged device is what became a household name. But to the right of that tube is another technological marvel that can also be combined into computing machines: the cryotron.

[Dudley Allen Buck] and his contributions to early computing are a tale of the possible alternate universe that could have been cryotrons instead of silicon transistors. Early on we find that the theory points to exotic superconductive materials, but we were delighted to find that in the conception and testing stages [Buck] was hacking. He made his first experimental electronic switches using dissimilar metals and dunking them in liquid helium. The devices were copper wire wrapped around a tantalum wire. The tantalum is the circuit path, the copper wire acts as the switch via a magnetic field that alters the resistance of the tantalum.

The name comes from the low temperature bath necessary to make the switches work properly. Miniaturization was the key as it always is; the example above is a relatively small example of the wire-wound version of the Cryotron, but the end goal was a process very familiar to us today. [Buck] was searching for the thin film fabrication techniques that would let him shoe horn 75,000 or more into one single computing platform. Guess who came knocking on his door during this period of his career? The NSA. The story gets even more interesting from there, but lest we rewrite the article we leave you with this: the technology may beat out silicon in the end. Currently it’s one of the cool kids on the block for those companies racing to the quantum computing finish line.

[Thanks Frederick]

Retrotechtacular is a weekly column featuring hacks, technology, and kitsch from ages of yore. Help keep it fresh by sending in your ideas for future installments.

inFORM the Morphing Table Gets Even More Interactive


Remember last week’s post on the inFORM, MIT’s morphing table? Well they just released a new video showing off what it can do, and it’s pretty impressive.

The new setup features two separate interfaces, and they’ve added a display  so you can see the person who is manipulating the surface. This springs to life a whole new realm of possibilities for the tactile digital experience. The inFORM also has a projector shining on the surface, which allows the objects shown from the other side to be both visually and physically seen — they use an example of opening a book and displaying its pages on the surface. To track the hand movements they use a plain old Microsoft Kinect, which works extremely well. They also show off the table as a standalone unit, an interactive table — Now all they need to do is make the pixels smaller… 

Stick around after the break to see some more awesome examples of the possibilities of this new tactile-digital interface. There are also some great clips near the end of the video showing off the complex linkage system that makes it all work.

Continue reading “inFORM the Morphing Table Gets Even More Interactive”

inFORM: MIT’s Morphing Table

Have you ever wished your dinner table could pass the salt? Advancements at MIT may soon make this a reality — although it might spill the salt everywhere. Enter the inFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation.

While the MIT paper doesn’t go into much detail of the hardware itself, there are a few juicy tidbits that explain how it works. There are 900 individually actuated white polystyrene pins that make up the surface, in an array of 30 x 30 pixels. An overhead projector provides visual guidance of the system. Each pin can actuate 100mm, exerting a force of up to 1.08 Newtons each. To achieve the actuation, push-pull rods are utilized to maximize the dense pin arrangement as seen, making the display independent of the size of the actuators. The actuation is achieved by motorized slide potentiometers grouped in sets of 6 using custom PCBs that are driven by ATMega2560s — this allows for an excellent method of PID feedback right off the actuators themselves. There is an excellent image of the entire system on page 8 of the paper that shows both the scale and complexity of the build. Sadly it does not look like something that could be easily built at home, but hey, we’d love for someone to prove us wrong!

Stick around after the break to see this fascinating piece of technology in action. The video has been posted by a random Russian YouTube account, and we couldn’t find the original source for it — so if you can, let us know in the comments!

Continue reading “inFORM: MIT’s Morphing Table”

Transformer built from MIT admissions mailing tube

mit-admissions-tube-robotIt’s not quite on the scale of [Michael Bay], but that’s probably a good thing. We do think that this robot built from a mailing tube by [Will Jack] would be right at home in a Transformers movie.

The bot starts out looking like a normal cardboard mailing tube. But the seam at the middle splits to reveal the electronics inside. An Arduino Uno drives the device, monitoring that infrared rangefinder which is facing forward. Each half of the tube acts as a wheel, pushing against the at-rest mass of the internals to create motion. It can even pull off a tank-like pivot to turn in place by spinning he halves in opposite directions.

We were intrigued to hear that the admissions department at the Massachusetts Institute of Technology sent a single page acceptance letter in these silver tubes to those students accepted into the class of 2017. The letter invites the incoming class to hack the tube and send in their results. We’re going to have to dig through the submissions and see if there are any other noteworthy projects.

Continue reading “Transformer built from MIT admissions mailing tube”

UC Davis students build coffee can radar project inspired by MIT


Blinking lights is a lot of fun, but if you’re getting an EE degree the cool stuff becomes a bit more involved. In this case, building your own radar is the thing to do. Here’s a coffee can radar setup being shown off by a group of UC Davis students. Regular readers will recognize the concept as one we looked at in December. The project was inspired by the MIT OpenCourseware project.

One of the cans is being used as a transmitter, the other as the collector. The neat thing about this rig is that the analysis is performed on a PC, with the sound card as the collection device. The video after the break shows off the hardware as well as the results it collected. About a minute and a half into the clip they show a real-time demonstration where a student walks in front of the apparatus while another takes a video of the plot results. As the subject moves away from the receiver the computer graph changes accordingly. The rest of the video covers some operational theory and pcb assembly.

Continue reading “UC Davis students build coffee can radar project inspired by MIT”

Beginner’s Android/Arduino example shows the power of App Inventor

This is a simple project. It uses an Android device to switch an LED driven by the Arduino. Connectivity is provided by the Bluetooth module inserted in the breadboard. But one look at the UI on the Android device and you might think this is anything but simple. The truth is that [Kerimil] didn’t spend forever learning Java and programming the app. Instead he’s showing off the power of  App Inventor to get your Android controls up and running fast.

Check out the third button down; when was the last time you added voice commands to your project? It’s worth clicking through to see just how simple that portion was. App Inventor — a Google cast-out that is now maintained by MIT — is a graphical tool that unlocks the power of an Android handset to those with the most basic of programming understanding. For instance, the voice controls shown off after the break are provided by a single bracket which uses conditional statements to ‘listen’ for the words on, off, and blink. You’ll find the voice recognition diagram after the break as well.

You could try to go completely graphical with this project. There’s the option of programming the Arduino side of the project in a similar way.

Continue reading “Beginner’s Android/Arduino example shows the power of App Inventor”